

The Odan/Detech Group Inc.

P: (905) 632-3811

F: (905) 632-3363
5230, SOUTH SERVICE ROAD, UNIT 107
BURLINGTON, ONTARIO, L7L 5K2
www.odandetech.com

PROPOSED SENIOR LIVING RESIDENTIAL DEVELOPMENT 79 HENDERSON STREET PORT HOPE, ONTARIO

PROJECT No.: 21241(PH)

FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

OWNER:

NAUTICAL LANDS GROUP

Prepared By:

THE ODAN/DETECH GROUP INC.

1st Submission – January 2022

2st Submission – November 2022

Table	e of Contents	
1.0	BACKGROUND	1
2.0	SCOPE OF WORK	2
3.0	SERVICING DESIGN CONSIDERATIONS	2
3.1	Sanitary Wastewater Disposal	2
3.2	Water Distribution	5
3.3	Stormwater Management	10
4.0	EROSION CONTROL	14
5.0	CONCLUSIONS	14
	OF TABLES 1 – Summary of Land Uses for Sanitary Flow Calculations	2
	2– Calculated Sanitary Sewage Flows from Proposed Development	
	3– Summary of Sanitary Flows from the Site	
	4– Existing Hydrant Pressure/Flow Conditions	
Table	5 – Total Water Demand for the Site – FUS -	6
Table	6 - Total Water Demand for the Site - OBC	9
Table	7 – Allowable Discharge	10
Table	8 - Catchment Characteristics for the Pre-Developed Site	11
Table	9 - Summary of Flows from Site-Pre-Development Condition	11
	10 – Storage Summary	
	11 - Catchment Characteristics for the Post-Developed Site	
Table	12 – Summary of Flows from Site	13
Table	13 - Summary Information	14

APPENDIX A - SITE

Aerial Photo of Existing Site Site Plan Site Statistics Topography of Existing Site

APPENDIX B - SANITARY

Sanitary Flow Calculations

APPENDIX C - WATER

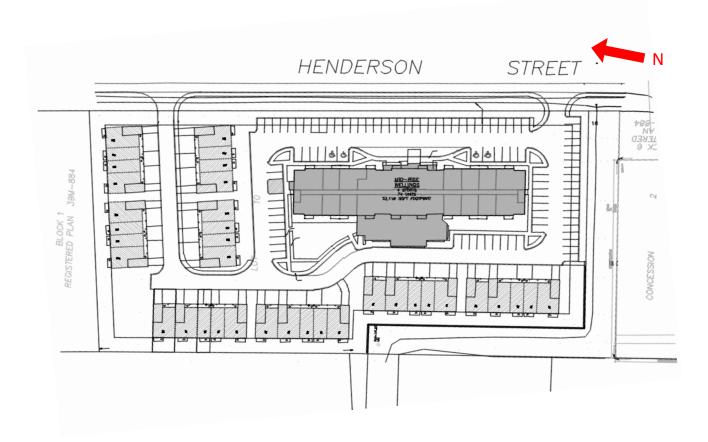
FUS Calculation Sheets
OBC Calculation prepared by Jain Sustainability Consultants Inc.
Fire Flow Testing Report

APPENDIX D - STORM

Pre-Development Storm Drainage Area Plan Post-Development Storm Drainage Area Plan Stage/Storage/Discharge Calculation Sheets Cultec Stormwater Sizing Sheets (if required) Visual OTTHYMO Model Visual OTTHYMO Output OGS Sizing Report

APPENDIX E

ODAN/DETECH Group Engineering Drawings Concept Site Servicing Concept Site Grading


Note: This report is to be read with the Site Servicing and Site Grading Plans prepared by Odan/Detech.

1.0 BACKGROUND

The property under study is a 1.82 ha site located at 79 Henderson Street in Port Hope. The site is bounded by Henderson Street to the east, a grocery store to the south (Davis' Your Independent Grocer), Home Hardware Building Centre and vacant area to the west, and a vacant area to the north. Presently, the site is vacant land with vegetated cover. Refer to the Aerial Photo of the Existing Site in **Appendix A** for additional details.

It is proposed by Nautical Lands Group (NLG) to construct 36 new townhouses (no basements) and a 4-storey apartment building with 40 two-bedroom units and 34 one-bedroom units. The rest of the site will be comprised of surface parking and landscape. Refer to **Figure 1** below for further information regarding the proposed layout of the site.

In general, the property surface topography is higher in the north-east and slopes gently towards the south-west. For detailed topography of the existing site conditions, refer to **Appendix A** for the latest topographic survey prepared by Sylvester & Brown Land Surveying Ltd., dated July 23, 2021.

Figure 1 is an Excerpt from the Architectural Site Plan, prepared by NLG. For detailed information regarding the layout of the proposed development, please refer to the latest drawings prepared by NGL. For general existing site conditions see **Appendix A**.

2.0 SCOPE OF WORK

THE ODAN/DETECH GROUP INC. was retained by the owner, **Nautical Lands Group**, to review the site, collect data, evaluate the site for the proposed land use and present the findings in an Engineering Report.

This report will evaluate the serviceability of the site with respect to sanitary, water and storm services and also evaluate the stormwater management (SWM) strategy that will be implemented to meet the Municipality of Port Hope design criteria.

3.0 SERVICING DESIGN CONSIDERATIONS

3.1 Sanitary Wastewater Disposal

Existing Condition

On the east side of the subject property, an existing 250mm diameter PVC sanitary sewer is located in the middle of Henderson St, which flows southerly towards the service corridor, where it is connected to the a 300mm diameter PVC sanitary sewer. This continues to the south-west side of the subject property where an existing 300mm diameter PVC sanitary sewer is located within a service corridor that flows northerly. At the mid-west side of the property the sewer bends and continues to flow in a westerly direction to Fox Road.

A summary of the existing and proposed land uses for the sanitary flows which outlet to Fox Road are shown in Table 1 below.

Table 1 – Summary of Land Uses for Sanitary Flow Calculations						
		Commercial Residential				
Land Use	Site Area (ha)	Floor Area (m²)	Total Population	No. of Units	Total Population	
Existing	1.822	0	0	0	0	
Proposed	1.822	0	0	110	229	

i) Pre-Development Site

For calculating the population increase for the site, the existing population was assumed to be zero because the site is vacant land.

ii) Post-Development Site

The following Municipality of Port Hope standards for population densities and flow rates will be used to calculate the sanitary flows from the proposed development.

Residential:

- 1.4 persons/unit for 1 bedroom apartment
- 2.1 persons/unit for 2 bedroom apartment

Flow Rates:

• flow rate of 450 L/person/day – residential

The infiltration factor for the City is 0.26 L/s per hectare.

The above values are based on City of Toronto Design Guidelines as discussed with the Municipality of Port Hope Engineering Department.

Sanitary flows from the proposed development are summarized as follows.

Table 2– Calculated Sanitary Sewage Flows from Proposed Development					
Peak Flow from Site (L/s)	4.92				
Infiltration (L/s)	0.47				
Total = Peak Flow + Infiltration (L/s)	5.39				

Proposed Sanitary Servicing

Proposed Condition

The proposed development consists of a senior living residential apartment and related senior living townhomes. Refer to the Architectural Statistics in Appendix A are provided for on the Architectural Site Plan.

The proposed site will utilize the existing sanitary sewer located on the service corridor. The site will propose a 200mm diameter sewer to capture the flow from the proposed 36 new townhouses and 74 units 4-storey apartment building. The size of the outlet sewer will be confirmed by Mechanical at the time of detailed design, adjustments may be required at that time.

Based on the population and flow rates the proposed site will have a peak flow of 5.42 L/s. The calculations for the site sanitary flows are included in **Appendix B** and are summarized below in **Table 3.**

Table 3– Summary of Sanitary Flows from the Site					
Location of Outlet	Existing Peak Flow (I/s)	Proposed Peak Flow (l/s)			
Henderson Street	0	5.39			

3.2 Water Distribution

Existing Condition

There is an existing 300mm diameter ductile iron watermain located on the east side of Henderson Street.

There are existing public fire hydrants located on the Henderson Street of the subject site which cover a portion of said site.

Hydrant flow tests for the hydrants described have been performed by SCG process on January 21st of 2022 with the following results.

Table 4– Existing Hydrant Pressure/Flow Conditions					
Hydrant Location	Static Pressure (Psi)	Flow @ 20 Psi (USGPM)			
79 Henderson Street	65.9	3338			

Proposed Condition

It is proposed to connect the site to the existing 300mm diameter watermain located on Henderson Street for domestic and fire-fighting purposes. New 200mm fire & 100mm domestic will be provided to the site.

The unit rate and peaking factors of water consumption, minimum pipe size and allowable pressure in line were established from the Municipality of Port Hope Guidelines. The fire flow water demand is calculated as per FUS 1999 manual.

The pressures and volumes must be sufficient for peak hour conditions and under fire conditions as established by the Ontario Building Code 2006. The minimal residual pressure under fire conditions is 140 kpa. (or 20.3 psi).

The firefighting calculations are based on a fire resistive rating of a sprinklered building with protected steel.

Please refer to **Appendix C** for further details.

The water demand of the proposed site is calculated as follows:

Residential Water Demand

a)	Average Day domestic demand -	using 270L/cap/day	0.72 L/sec
		(229 persons, from san	tary calculations)
b)	Peak day demand -	1.8 x daily demand	1.30 L/sec
c)	Peak hour demand -	3.0 x daily demand	2.16 L/sec
d)	Fire flow (Fire Resistive)	•	301.3 L/sec

Table 5 -	. Total	Water	Demand	for the	Site -	FUS -
lable 5 =	· IUlai	vvalei	Demand	TOL LITE	one –	rus -

	Table 6 Total Water Belliand for the Gr	
	L/sec	USGM
Peak Day Demand	1.30	20.6
Fire Flow Demand	300	4755
Total Water Demand	301.3	4776
Actual Flow at 20 PSI Residual Pressure	210.6	3338

Based on the hydrant flow testing results and as determined using the FUS method for calculating fire flows the existing main is not sufficient to service the subject development. However, since the FUS is typically used for planning purposes the required fire flows will be based on the OBC at the detailed design stage to show that adequate flows are available to service the building.

In general, a residential development requires 150 l/sec (2,378 USGPM) for fire protection. The OBC fire flow calculation for a sprinklered building is provided on the next page based on the same building from a similar development. This shows the required fire flow for this building when sprinklered. The following was provided by Jain Sustainability Consultants Inc. for a similar site proposed in Bradford, Ontario. The full report prepared by JSCI can be found in Appendix

Jan. 17, 2022

Re: 500 Holland Street W., Bradford ON.

Fire Protection Water Supply Requirement for Part 3 of O.B.C.

The proposed commercial building at 500 Holland Street W., Bradford ON. is a Seniors apartment building. The entire building is of combustible construction, sprinklered.

The site and building is serviced by municipal water supply (Water flow and pressure test attached)

Existing Site (attached)

The Subject Site is located on the (short description of site and surrounding areas)

To the North: Vacant Land

To the East: Existing Grocery Store To the West: Langford Blvd To the South: Miller Park Ave

Calculation: Q=KVStot

K: building construction classification

V: building volume

Stot: building property line distances

Stot = $1+ \Sigma$ Stot

Building classifications by group:

Apartment Building: C (K=18)

Building Volume:

24,625 m³

Building multiple exposures:

18.1 m; Stot = 0

27.6 m; Stot =0

3.0 m1.5m, Stot=0.5

26.5 m, Stot = 0

Stot = 1+0+0+0.5+0

Jain Sustainability Consultants Inc. 7405 East Danbro Crescent, Mississauga, Ontario, L5N 6P8 Canada (905) 285-9900 (905) 567-5246 (905) mail@jainconsultants.com (905) www. jainconsultants.com (905) 285-9900 (905

thinking globally, delivering locally

Q=18 x 24,626 m3 x 1.5

Q=664,902 m3

According to Fire protection Water Supply guideline for Part 3 of OBC A3.2.5.7, Table 2:

Minimum water supply flow rate for Q≥270,000

Required water supply shall be 9000 L/min (150 L/sec)

Conclusion:

Municipal water supply graph shows sufficient flow and pressure used for sprinkler and inside and outside hose stream requirement as referenced by Article 3.2.5.13 of the Building Code and NFPA 13.

Yours very truly,

D. Jain, M.Eng., M.B.A., P.Eng., C.E.M., L.A.P.

Enclosures

- 1. Site Plan
- 2. Water flow and pressure test

As can be seen above and based on the OBC the water demand can be adjusted as shown in Table 6;

Table 6 – Total Water Demand for the Site – OBC -					
	L/sec	USGM			
Peak Day Demand	1.30	20.6			
Fire Flow Demand	150	2,378			
Total Water Demand	151.3	2,398			
Actual Flow at 20 PSI Residual Pressure	210.6	3,338			

As can be seen above the existing water supply will be adequate to provide the necessary domestic and fire flow to the proposed site under the Ontario Building Code applied sprinklered building calculations. Final calculations will be provided to confirm the above by a qualified sprinkler consultant at the detailed design stage.

3.3 Stormwater Management

Existing Condition

On the south side of the subject property, there is an existing 1.0 meter flat bottom ditch, with 3:1 sloping and a minimum depth of 0.8 meters, located on a service corridor that flows westerly until the southwest corner of the property. It then continues to flow northerly for approximately 83.5 meters where it then changes direction and flows to the west towards Fox Road.

On the east side of the subject property, there is an existing ditch which flows southerly down Henderson Street, and outlets into the existing 1.0 meter flat bottom ditch on the south of the property.

The existing site drains via sheet flow to the existing 1.0 meter flat bottom ditch on service corridor.

Pre - Development Flows:

The allowable flows were based on criteria obtained from the Town of Port Hope during a preconsultation meeting. The design criteria provided is to control flows from the site to 17.3 l/s/ha in accordance with the *Stormwater Management and Erosion and Silt Control Report* by Aecom, (2011).

Design storm data for the Town of Port Hope:

5 Year storm event

 $I_5 = 2464/(Tc+16)$ where: I = intensity (mm/hr.)

Tc = time of concentration (min)

100 Year storm event

 $I_{100} = 5588/(Tc+28)$ where: I = intensity (mm/hr.)

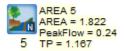

Tc = time of concentration (min)

Table 7 – Allowable Discharge				
Total Area (ha)	Q (l/s) – 17.3 l/s/ha			
1.822	31.5			

A Visual OTTHYMO is used to for the modelling to determine the peak flows for 5- and 100-year storm events for the existing condition using NASHYD method, see the following Table 8 for the description and characteristics of the pre-development system. The pre-development discharge for 100-year storm event is 240 l/s however, the post-development discharge should be less or equal to the allowable discharge.

Table 8 – Catchment Characteristics for the Pre-Developed Site								
Area No.	Area (ha)	Hydrograph Method	% impervious	imperviousness directly connected %	Loss Method for Pervious Area	CN for Pervious Area	Initial Abstraction for Pervious Area	Time to peak (T _P)
Site	1.822	NASHYD	-	-	SCS	80	5	0.20

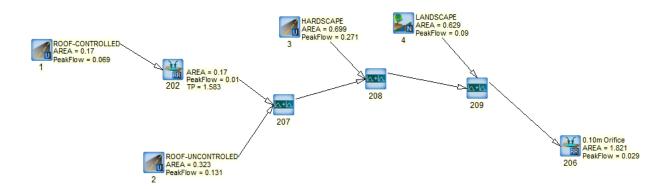
A schematic of Visual OTTHYMO Model (100 Year Storm)-pre-development condition is shown below:

The following **Table 9** shows a summary of the peak flows from the site.

Table 9 – Summary of Flows from Site-Pre-Development Condition						
Storm Event	Allowable Flow (L/s)	Pre-Development Flow (L/s)				
5 Year Storm	31.5	75				
100 Year Storm	31.5	240				

Refer to the Visual OTTHYMO detailed output in **Appendix D** for further details.

Post - Development Flows:


For the purposes of post-development analysis, the proposed site has been divided into post-development tributary areas as shown in **Appendix D**

In order to control the post development flows to allowable flows, on-site storage by two underground storage chambers and a dry pond as well as a roof control for the 4-storey apartment building will be required. Visual OTTHYMO will be used to model and determine the detention volume required. A 0.10m (100mm) Orifice plate will be used to detain flows on site before discharging to the existing ditch on the west side of the property. The stage/storage/discharge properties used to model the flow controls for this site are shown in **Appendix D.** A summary of the site storage is provided in Table 10 below.

	Table 10 – Storage Su	mmary
Storm	Required Storage (m ³)	Provided Storage (m³)
5 Year	337	907
100 Year	890	907

Visual OTTHYMO 2.3.2. will be used to model and determine the peak flows for 5- year and 100-year storm events. For drainage areas with significant imperviousness the calculation of effective rainfall in Visual OTTHYMO is accomplished using the "STANDHYD" method. This method is used in urban watersheds to simulate runoff by combining two parallel standard unit hydrographs resulting from the effective rainfall intensity over the pervious and impervious surfaces. For pervious surfaces, losses are calculated using the SCS modified CN method.

See schematic of Visual OTTHYMO Model (100 -Year Storm) below:

Table 11 shows the description and characteristics of the post-development system. Refer to the Visual OTTHYMO detailed output file in **Appendix D** for further details.

Table 11 – Catc	Table 11 – Catchment Characteristics for the Post-Developed Site													
Area No.	Area (ha)	Hydrograph Method	% impervious	imperviousness directly connected %	Loss Method for Pervious Area	CN for Pervious Area	Initial Abstraction for Pervious Area	Time to peak (T _{p.})						
Area 1- Rooftop Controlled	0.17	STANDHYD	99	99	SCS	80	1	-						
Area 2- Rooftop uncontrolled	0.323	STANDHYD	99	99	SCS	80	1	-						
Area 3- Hardscape	0.699	STANDHYD	90	90	SCS	80	1	-						
Area 3 - Landscape	0.629	NASHYD	-	-	SCS	80	5	0.167						

The following **Table 12** shows a summary of the total peak flows from the site.

Table 12 – Summary	of Flows from Site	
Storm Event	Allowable Flow (L/s)	Proposed Flow (L/s)
5 Year Storm	31.5	21
100 Year Storm	31.5	29

As can be seen the post development flow is less than the allowable flow for both the 2- and 100-year storm events, thus meeting the Town of Port Hope storm water quantity controls for the proposed development.

Water Quality:

For the purposes of zoning and based on the type of development water quality can be achieved through the use of an adequately sized Oil/Grit Separator or Oil/Grit Filtration Separator in combination with LID's and alternative means to achieve water quality.

Water Quality for the proposed development will be determined at the detailed design stage based on the above noted design principals to meet the required water quality storm events.

Based on the current site plan it is expected that a HydroDome HD 6 will meet the required 80% TSS removal.

For further detailed calculations refer to Appendix D.

4.0 EROSION CONTROL

Erosion and sediment controls for the site will be implemented according to The Ministry of Natural Resources Guidelines on Erosion and Sediment Control for Urban Construction Sites. A detailed erosion control plan is included in the set of drawings.

5.0 CONCLUSIONS

From our investigation, the site is serviceable utilizing existing sanitary, storm and watermain infrastructure adjacent to the site. The post development 2- & 100-year storm design have been maintained at the allocated flow rate for the site.

The following **Table 13** summarizes the components of the proposed development.

Table 13 – Summary Information	
Total Sanitary Flow (L/sec)	5.42
Total Water Demand : (L/sec)	151.3
Actual Flow at 20 PSI (L/sec)	210.6
Allowable release rate from site (L/sec) (100- year storm)	31.5
Actual release rate from site (L/sec) (100 year storm)	29
Total Storm Water Storage Required (m3)	890
Total Storm Water Storage Provided (m3)	907
Quantity Control	100mm Dia. Orifice Plate
Water Quality	Oil Grit Separator

Respectfully Submitted;

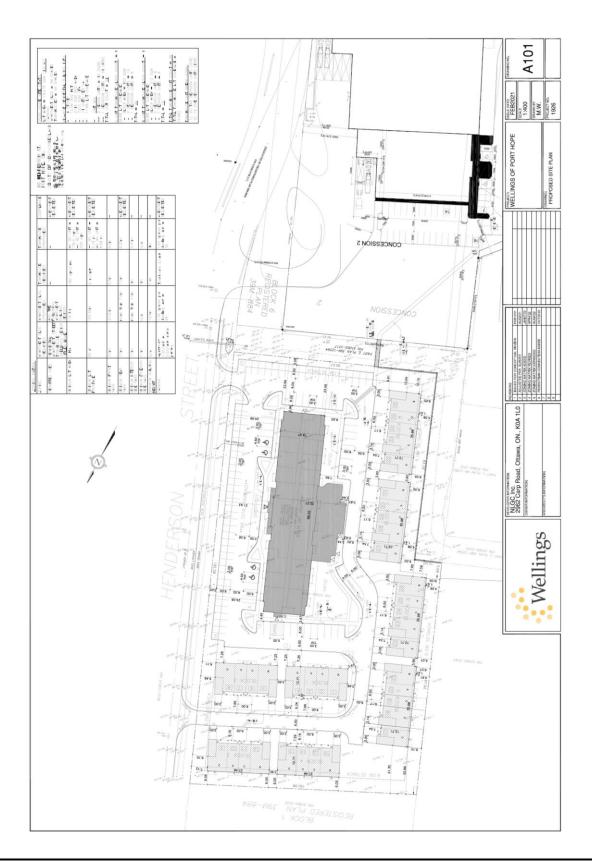
The Odan/Detech Group Inc.

Nov. 10, 2022 Paul Hecimovic, P.Eng.

En.M.Ch.MO

Nov. 10, 2022 Muwaffaq Al-Awad, M.Sc., P.Eng.

APPENDIX A


- A1. Aerial Photo of Existing Site
- A2. Site Plan
- A3. Site Statistics
- A4. Topography of Existing Site

A.1 Aerial Photo of Existing Site

Appendix A – Figure 1: Aerial Photo of Existing Site is an excerpt from Google Maps with the approximate property line shown (**red** line). For detailed information regarding the existing property line and topography site conditions, refer to the latest survey and drawings prepared by Sylvester & Brown Land Surveying Ltd., see also **Appendix A – Figure 2**.

A.2 Site Plan

A.3 Site Statistics

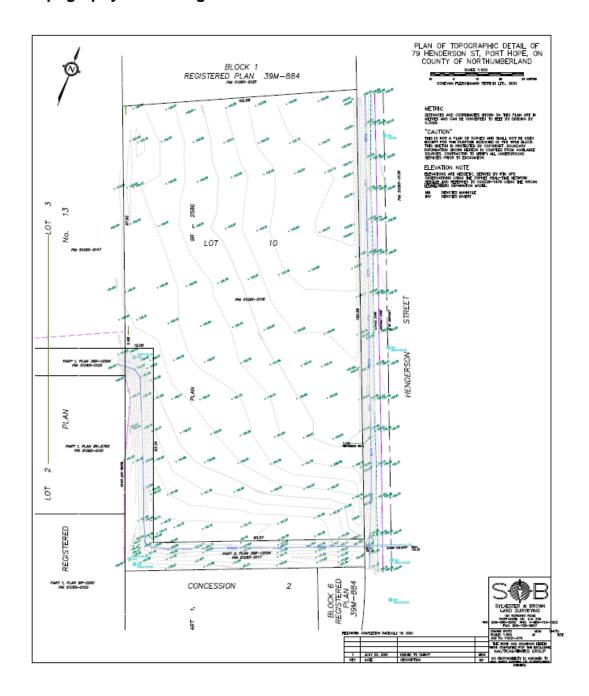
```
PORT HOPE SITE STATS:
LOT AREA = 18,218 SQM (4.5 AC)
PARKING:
APARTMENT BLDG = 98 SPACES
TOWNHOUSES = 56 SPACES
MID-RISE RESIDENTIAL BUILDING INFO:
    4 STOREY
    13.5M BDG HGT.
    2148 SQM BDG AREA
   7223 SQM GFA
   74 UNITS PER HA.

    11.8% LOT COVERAGE

   UNIT MIX:
-- 2 BEDRM UNITS = 40 (52%)
-- 1 BEDROOM UNITS = 34 (48%)
TOTAL UNIT COUNT = 74
<u> 5 UNIT TOWNHOUSE BLOCK COUNT:</u> = 4
(8.8% LOT COVERAGE)
 - BLOCK AREA = 402 SQM

    2 BEDROOM UNITS = 12

– 1 BEDROOM UNITS = 8
TOTAL = 20
4 UNIT TOWNHOUSE BLOCK COUNT: = 4
(6.8% LOT COVERAGE)


    BLOCK AREA = 312 SQM

– 2 BEDROOM UNITS = 8
 - 1 BEDROOM UNITS = 8
TOTAL = 16
TOTAL TOWNHOUSE UNIT COUNT = 36
(TOTAL TOWNHOUSE LOT COVERAGE =
15.6%)
TOWNHOUSE UNIT BREAK-DOWN:

    20 TWO BEDROOM UNITS (55%)

    16 ONE BEDROOM UNITS (45%)
```

A.4 Topography of Existing Site

Appendix A – Figure 2: Topography of Existing Site is topography from Drawing 20-2716, dated July 23, 2021 and prepared by Sylvester & Brown Land Surveying Ltd. For detailed information regarding the existing topography site conditions, refer to the latest survey and drawings prepared by Sylvester & Brown Land Surveying Ltd.

APPENDIX B

SANITARY FLOW CALCULATIONS

SANITARY FLOW CALCU	LATIONS			SCENERI	O:	Proposed/Exi	sting Devel	opment
This program calculates the sanit	ary discharge	from variou	us land use					
As per the City of Toronto Guideli					FILL IN COLO	URED CELLS	S AS REQU	JIRED
TOTAL SITE AREA (ha) =	1.822							
LAND USE	NUMBER OF UNITS	SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, I/sec
RESIDENTIAL EX 1 Bedroom, using 1.4 persons/unit	0			0	0	0.00		
RESIDENTIAL PROP 1 Bedroom, using 1.4 persons/unit	34			48	21420	0.25		
RESIDENTIAL EX 2 Bedroom, using 2.1 persons/unit	0			0	0	0.00		
RESIDENTIAL PROP 2 Bedroom, using 2.1 persons/unit	40			84	37800	0.44		
RESIDENTIAL EX 3 Bedroom using 3.1 persons/unit	0			0	0	0.00		
RESIDENTIAL PROP 3 Bedroom using 3.1 persons/unit	0			0	0	0.00		
RESIDENTIAL EX Townhouse using 2.7persons/unit	0			0	0	0.00		
RESIDENTIAL PROP TH using 2.7persons/unit	36			97	43740	0.51		
Total Residential	110			229	102960	1.19	4.13	4.9
COMMERCIAL, Using 100 persons/ha	0			0				
COMMERCIAL, Using 1.1 persons/100 m2	0			0				
OFFICES, Using, 3.3 persons/100m2	0			0				
Total ICI	0	0.00			0	0.00		0.0
				P=	229			
TOTAL				V1=	102960	Q1= Q2=		
Q = (MqP/86400) + A * I (L/sec)						Qinfil Qtot	0.47	
Q1= total flow from Residential La Q2= total flow from Commercial L Qinfil = total flow from infiltration (Qtot = total flow (Land use + infilt	and Use (L/s L/sec)		where :	q = 250 L	/cap/day (Ex	Residential) Commerical/C		
V1= Total Volume from Land Use			i = 0.26 L	site area /sec/ha (infiltra	ation rate) 1 + [14 / (4 + (

APPENDIX C

FUS CALCULATION SHEET

OBC CALCULATION by JSCI

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FI	RE UNDER	WRITERS	SURVEY					
GUIDE FOR DETERMINATION OF REQUIR	RED FIRE F	LOWS							
F = 220 x C x √ A									
Where:									
F = required fire flow in liters per minute									
C= Coefficient related to the type of cons	truction								
A = the total floor area in square meters (excluding basements) in the building									
considered									
LOCATION:	79 Hende	erson Stree	et, Port H	оре	PROJECT:	4 Storey Mi	d rise building		
OBC OCCUPANCY:		Reside	ential		PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	2121							Contents	Charge
· ·	4					our ministration		Non-Combustible	-25%
# OF STOREYS	•							Limited	
								Combustible	-15%
						The second		Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame					Free Burning	15%
								Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total			i i			
NFPA 13 sprinkler standard	Yes	30%						Coefficient related to	type of construction
Standard Water Supply	Yes	10%	50%					4.5	Wood Frame
Fully Supervised System	Yes	10%	-		1	iii a mmur		1.5	Ordinary
Tully Supervised System	165	50%						0.8	Non combustible
								0.6	Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ible	CHARGE	: -15%			
EVPOCLIBE 1 (courth)	Dista	naa ta Eva	acura Dui	ilding (m)				Separation	Charge 25%
EXPOSURE 1 (south)	Dista	nce to Exp		n - Height	>45	0		0-3 m 3.1 -10 m	25%
EXPOSURE 2 (east)	Dista	nce to Exp						10.1 - 20 m	15%
,				h - Height	>45	0		20.1 - 30 m	10%
EXPOSURE 3 (west)	Dista	nce to Exp			14.3	15		30.1 - 45	5%
				h - Height	-110			> 45 m	0%
EXPOSURE 4 (north)	Dista	nce to Exp		n - Height	21.7	10		Firewall	10%
			Lengu	1 - Height			no more than		
					Total:	25	75%		
ARE BUILDINGS CONTIGUOUS.	NO								
ARE BUILDINGS CONTIGUOUS:	IVO								
FIRE RESISTANT BUILDING	Are vertical	openings an	d exterior v	vertical commun	ications protected with a	minimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fran	ne				
<u> </u>	A =	7153	m2	Total				STOREY AREAS m2	
David de Names de constitut	F =	27909	L/min	manust been fi	2000 I /mir			2121	
Round to Nearest 1000 L/min	F =	28000	L/min	must be > 2	2000 L/min			1677 1677	
CORRECTION FACTORS:								1677	
OCCUPANCY		-4200	L/min						
FIRE FLOW ADJUSTED FOR OCCUPANCY		23800	L/min						
REDUCTION FOR SPRINKLER		-11900	L/min						
EXPOSURE CHARGE		5950	L/min						
REQUIRED FIRE FLOW	F=	17850	L/min						
Round to Nearest 1000 L/min	F=	18000	L/min	4755 us	gm				
			,		~				
Round to Neurest 1999 Lymin	F=	300	L/sec						

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FIF	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR										
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	ope		PROJECT:	4 Unit Blook	(
OBC OCCUPANCY:		Reside	ntial			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	312								Contents	Charge
	1					140000			Non-Combustible	-25%
# OF STOREYS									Limited	
									Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
ALITOMATER CRRINING TO THE CONTROL OF THE CONTROL O						· -	I		Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION	_	Credit	Total							
NFPA 13 sprinkler standard	No	0%	0%				25 1		Coefficient related to	type of constructio
Standard Water Supply	No	0%	078			1	H ammy		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%							0.8	Non combustible Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ible		CHARGE:	-15%		0.6	rife Resistive
						0			Separation	Charge
EXPOSURE 1 (south)	Distar	ice to Expo	sure Bui	lding (m)		22.6	10		0-3 m	25%
			Length	ı - Height		22.6	10		3.1 -10 m	20%
EXPOSURE 2 (east)	Distar	ice to Expo	sure Bui	lding (m)		>45	0		10.1 - 20 m	15%
				- Height		743	U		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distar	ice to Expo				3.6	20		30.1 - 45	5%
				- Height					> 45 m	0%
EXPOSURE 4 (north)	Distar	ice to Expo				>45	0		Firewall	10%
			Length	ı - Height				no more than		
						Total:	30	75%		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical	openings and	d exterior v	ertical comm	unicat	tions protected with a r	ninimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fr	ame					
	A =	312	m2	Total					STOREY AREAS m2	
	F =	5829	L/min						312	
Round to Nearest 1000 L/min	F =	6000	L/min	must be	> 200	00 L/min			0	
CORRECTION FACTORS:									0	
OCCUPANCY		-900	L/min						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		5100	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		1530	L/min							
REQUIRED FIRE FLOW	F =	6630	L/min							
Round to Nearest 1000 L/min	F=	7000	L/min	1849 ı	usgm					
	F=	117	L/sec	20.10						
	<u> </u>		_, 500							

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FIF	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR	RED FIRE FI	OWS								
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	ope		PROJECT:	4 Unit Bloo	(
OBC OCCUPANCY:		Reside	ntial			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	312	reside	i i ciui			l Rosect No.			Contents	Charge
	1								Non-Combustible	-25%
# OF STOREYS	1								Limited	2570
									Combustible	-15%
						سسم الله			Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
							I		Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%	00/						Coefficient related to	type of construction
Standard Water Supply	No	0%	0%			-	III ummu		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%				'	1 11	-	0.8	Non combustible
		12.22.1.		11.1			4.50/		0.6	Fire Resistive
CONTENTS FACTOR:		Limited	Lombust	ible		CHARGE	-15%		Separation	Charge
EXPOSURE 1 (south)	Distar	ice to Expo	sure Bui	ilding (m)					0-3 m	25%
				n - Height		22.6	10		3.1 -10 m	20%
EXPOSURE 2 (east)	Distar	ice to Expo							10.1 - 20 m	15%
				n - Height		3.6	20		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distar	ice to Expo	sure Bui	ilding (m)		20.9	10		30.1 - 45	5%
			Length	n - Height		20.9	10		> 45 m	0%
EXPOSURE 4 (north)	Distar	ice to Expo	sure Bui	ilding (m)		>45	0		Firewall	10%
			Length	n - Height		<i>></i> 45	U			
						Total:	40	no more than 75%		
								7,1		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical	penings and	l exterior v	ertical comm	nunicat	ions protected with a	minimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fr	rame					
-	A =	312	m2	Total					STOREY AREAS m2	
	F =	5829	L/min						242	
Round to Nearest 1000 L/min	F =	6000	L/min	must be	> 200	00 L/min			312	
CORPORTION FACTORS									0	
CORRECTION FACTORS: OCCUPANCY		-900	L/min						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		5100	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2040	L/min							
DECLUDED FIRE FLOW	_	74.40	1. /							
REQUIRED FIRE FLOW	F=	7140	L/min	1040						
Round to Nearest 1000 L/min	F=	7000	L/min	1849	usgm					
	F=	117	L/sec							

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FIR	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR										
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	ope		PROJECT:	4 Unit Blool	(
OBC OCCUPANCY:		Reside	ntial			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	312	reside	Traid:			l Rosect No.			Contents	Charge
	1					190100	THE REAL PROPERTY.		Non-Combustible	-25%
# OF STOREYS									Limited	
									Combustible	-15%
						STATE OF THE PARTY			Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
ALITOMATED CODINIUS ED DOCTECTION		Craclit	Tot-!				I		Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total				N. T. S.		Coefficient 1: 1:	
NFPA 13 sprinkler standard	No	0%	0%				45		Coefficient related to	
Standard Water Supply	No	0%	1 0,0			1111111	11 40 1111111111		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%							0.8	Non combustible
CONTENTS FACTOR:		Limited	Combust	ihle		CHARGE:	-15%		0.6	Fire Resistive
CONTENTS TACTOR.		Liiiiitea	COMBUST	ibic		CHARGE.	13/0		Separation	Charge
EXPOSURE 1 (south)	Distan	ice to Expo	sure Bui	lding (m)		21.0	10		0-3 m	25%
			Length	ı - Height		21.8	10		3.1 -10 m	20%
EXPOSURE 2 (east)	Distan	ice to Expo	sure Bui	lding (m)		>45	0		10.1 - 20 m	15%
				ı - Height		743	U		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distan	ice to Expo	sure Bui	lding (m)		3.6	20		30.1 - 45	5%
				ı - Height		5.0			> 45 m	0%
EXPOSURE 4 (north)	Distan	ice to Expo				22.6	10		Firewall	10%
			Length	ı - Height						
						Total:	40	no more than 75%		
ARE BUILDINGS CONTICUOUS.	luo.									
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical o	openings and	d exterior v	ertical comm	unicat	ions protected with a r	minimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fr	ame					
	A =	312	m2	Total					STOREY AREAS m2	
	F =	5829	L/min						312	
Round to Nearest 1000 L/min	F =	6000	L/min	must be	> 200	00 L/min			0	
CORRECTION FACTORS:									0	
OCCUPANCY		-900	L/min						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		5100	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2040	L/min							
REQUIRED FIRE FLOW	F =	7140	L/min							
Round to Nearest 1000 L/min	F=	7000	L/min	1849 u	ısgm					
	F=	117	L/sec	20.0						
			-,							

WATER SUPPLY FOR PUBLIC FIRE PROTEC	CTION , FIF	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIF	RED FIRE FI	LOWS								
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building considered										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	оре		PROJECT:	4 Unit Blool	<		
OBC OCCUPANCY:		Reside	ntial			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	312								Contents	Charge
# OF STOREYS	1					- 4000			Non-Combustible	-25%
# OI STOREIS									Limited	450/
									Combustible	-15%
						anni			Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
						· _	in 1, 1		Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%	00/						Coefficient related to	type of construction
Standard Water Supply	No	0%	0%				u numul r		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%				1		-	0.8	Non combustible
CONTENTS FACTOR:		Limited	Combust	iblo		CHARGE:	-15%		0.6	Fire Resistive
CONTENTS FACTOR.		Limited	Combust	ible		CHARGE:	-13/0		Separation	Charge
EXPOSURE 1 (south)	Distar	nce to Expo	sure Bui	ilding (m)					0-3 m	25%
,				n - Height		23.0	10		3.1 -10 m	20%
EXPOSURE 2 (east)	Distar	nce to Expo	sure Bui	ilding (m)		3.6	20		10.1 - 20 m	15%
				n - Height		3.0	20		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distar	nce to Expo				16.8	15		30.1 - 45	5%
				n - Height					> 45 m	0%
EXPOSURE 4 (north)	Distar	nce to Expo				22.6	10		Firewall	10%
			Lengtr	n - Height				no more than		
						Total:	55	75%		
ARE BUILDINGS CONTIGUOUS:	NO									
ARE BOILDINGS CONTIGUOUS.	NO									
FIRE RESISTANT BUILDING	Are vertical	openings and	exterior v	ertical comm	nunicat	ions protected with a r	ninimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fr	ame					
	A =	312	m2	Total					STOREY AREAS m2	
	F =	5829	I /min						242	
Round to Nearest 1000 L/min	F =	6000	L/min L/min	must be	> 200	00 L/min			312 0	
·			Ė						0	
CORRECTION FACTORS: OCCUPANCY		000	I /m::-						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		-900 5100	L/min L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2805	L/min							
REQUIRED FIRE FLOW	F =	7905	L/min							
Round to Nearest 1000 L/min	F=	8000	L/min	2113	usgm					
	F=	133	L/sec							

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FIF	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR	RED FIRE FI	OWS								
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	оре		PROJECT:	5 Unit Blool	(
OBC OCCUPANCY:		Reside	ntial			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	402								Contents	Charge
	1					- 1935			Non-Combustible	-25%
# OF STOREYS	-								Limited	
									Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
									Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%							Coefficient related to	type of construction
Standard Water Supply	No	0%	0%			-	II HIIIIIIII		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%				ı ı	1 1	-	0.8	Non combustible
CONTENTS FACTOR:		Lincipad	C	:1-1-		CUARCE	150/		0.6	Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ibie		CHARGE:	-15%		Separation	Charge
EXPOSURE 1 (south)	Distar	ice to Expo	sure Bui	lding (m)					0-3 m	25%
				ı - Height		3.6	20		3.1 -10 m	20%
EXPOSURE 2 (east)	Distar	ice to Expo				16.8	15		10.1 - 20 m	15%
			Length	ı - Height		10.8	15		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distar	ice to Expo	sure Bui	lding (m)		>45	0		30.1 - 45	5%
				ı - Height		- 13	Ů		> 45 m	0%
EXPOSURE 4 (north)	Distar	ice to Expo				>45	0		Firewall	10%
			Length	ı - Height				no more than		
						Total:	35	75%		
ARE BUILDINGS CONTICUOUS.										
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical	openings and	d exterior v	ertical comm	unicat	ions protected with a r	ninimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fra	ame					
	A =	402	m2	Total					STOREY AREAS m2	
	F =	6616	L/min						402	
Round to Nearest 1000 L/min	F=	7000	L/min	must be >	> 200	00 L/min			0	
									0	
CORRECTION FACTORS: OCCUPANCY		-1050	L/min						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		5950	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2082.5	L/min							
REQUIRED FIRE FLOW	F =	8033	L/min		1					
Round to Nearest 1000 L/min	F =	8000	L/min	2113 ι	ısgm					
	F =	133	L/sec			<u> </u>				

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FIR	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR	RED FIRE FL	OWS								
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	ope		PROJECT:	5 Unit Blool	(
OBC OCCUPANCY:		Reside	ntial			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	402	Reside	iitiai			PROJECT NO.			Contents	Charge
	1						NAME OF TAXABLE PARTY.		Non-Combustible	-25%
# OF STOREYS	1									-23/0
									Limited Combustible	-15%
						سسم الم			Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
							4		Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%							Coefficient related to	type of construction
Standard Water Supply	No	0%	0%			-	II IIIIIIIIIII		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%				T I	1	-	0.8	Non combustible
									0.6	Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ible		CHARGE:	-15%		Canavatian	Chargo
EXPOSURE 1 (south)	Distan	ice to Expo	sure Rui	lding (m)					Separation 0-3 m	Charge 25%
EXT COOKE 1 (SOUTH)	Distair	ice to Expt		ı - Height		7.3	20		3.1 -10 m	20%
EXPOSURE 2 (east)	Distan	ice to Expo							10.1 - 20 m	15%
2.11 000112 2 (case)	2.50	ice to Enpi		ı - Height		29.6	10		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distan	ice to Expo							30.1 - 45	5%
,				ı - Height		>45	0		> 45 m	0%
EXPOSURE 4 (north)	Distan	ice to Expo				2.6	20		Firewall	10%
,		·		ı - Height		3.6	20			
						Total:	50	no more than		
								75%		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical	openings and	d exterior v	ertical comm	unicat	ions protected with a r	ninimum one	(1) hr rating?	NO	
								. ,		
CALCULATIONS	C =	1.5		Wood Fra	ame					
	A =	402	m2	Total					STOREY AREAS m2	
	F =	6616	L/min						402	
Round to Nearest 1000 L/min	F =	7000	L/min	must be	> 200	00 L/min			0	
CORRECTION FACTORS:									0	
OCCUPANCY		-1050	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY		5950	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2975	L/min							
REQUIRED FIRE FLOW	F =	8925	L/min							
Round to Nearest 1000 L/min	F=	9000	L/min	2378 u	ısgm					
to Hearest 2000 L/IIIII	F=	150	L/sec	23,0	~26111					
	· -	130	LJJCL							

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FIR	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR										
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	ope		PROJECT:	5 Unit Bloo	<		
OBC OCCUPANCY:	Residential				PROJECT No:	PROJECT No: 21241 (PH)				
BUILDING FOOT PRINT (m2):	402	reside							Contents	Charge
	1					1919101	PROPERTY		Non-Combustible	-25%
# OF STOREYS	-								Limited	25/5
									Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
						[Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%							Coefficient related to	type of construction
Standard Water Supply	No	0%	0%			- HILL	II IIIIIIIIIIIII		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%						-	0.8	Non combustible
							4=0/		0.6	Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ibie		CHARGE:	-15%		Separation	Charge
EXPOSURE 1 (south)	Distance to Exposure Building (m)								0-3 m	25%
	Length - Height					3.6	20		3.1 -10 m	20%
EXPOSURE 2 (east)	Distance to Exposure Building (m)					14.2	4.5		10.1 - 20 m	15%
			Length	ı - Height		14.2	15		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distance to Exposure Building (m)					> 45	0		30.1 - 45	5%
	Length - Height Distance to Exposure Building (m) Length - Height					7 43	U		> 45 m	0%
EXPOSURE 4 (north)						7.3	20		Firewall	10%
						7.0				
						Total:	55	no more than 75%		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical o	openings and	d exterior v	ertical comm	unicat	ions protected with a r	minimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fr	ame					
	A =	402	m2	Total					STOREY AREAS m2	
	F =	6616	L/min						402	
Round to Nearest 1000 L/min	F =	7000	L/min	must be	> 200	00 L/min			0	
CORRECTION FACTORS:									0	
OCCUPANCY		-1050	L/min						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		5950	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		3272.5	L/min							
DECLIDED FIDE FLOW		9223	I /min							
REQUIRED FIRE FLOW Round to Nearest 1000 L/min	F =	9000	L/min L/min	2378 u	ıçam					
NOUTIU TO NEGREST 1000 L/MIN	F=	150	-	23/0 L	usgm					
	F =	130	L/sec							
			_							

WATER CLIRRI V EOR DURIUC EIRE RROTE	CTION EI	DE LINIDEDI	A/DITEDS	CLIDVEV						
WATER SUPPLY FOR PUBLIC FIRE PROTE GUIDE FOR DETERMINATION OF REQUII			WKITEKS	SURVEY						
F = 220 x C x V A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons			-							
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Henderson Street, Port Hope					PROJECT:	5 Unit Blool	<u> </u>		
OBC OCCUPANCY:	Residential				PROJECT No:	21241 (PH)				
BUILDING FOOT PRINT (m2):	402	Neside	iiuai			PROJECT NO.	· , ,		Contents	Charge
BOILDING FOOT PRINT (III2):						(60)(60)	N PERSONAL PROPERTY AND ADDRESS OF THE PERSONAL			
# OF STOREYS	1								Non-Combustible	-25%
									Limited Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
CONSTRUCTION CLASS.									Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%							Coefficient related to	type of construction
Standard Water Supply	No	0%	0%				II HIIIIIIH		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%							0.8	Non combustible Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ible		CHARGE:	-15%		0.6	rire Resistive
									Separation	Charge
EXPOSURE 1 (south)						>45	0		0-3 m	25%
	Length - Height Distance to Exposure Building (m)					- 45			3.1 -10 m	20%
EXPOSURE 2 (east)						27.7	10		10.1 - 20 m	15%
EXPOSURE 3 (west)	Length - Height								20.1 - 30 m 30.1 - 45	10% 5%
EXT OSURE 3 (West)	Distance to Exposure Building (m) Length - Height					26.8	10		> 45 m	0%
EXPOSURE 4 (north)	Distance to Exposure Building (m)					3.6	20		Firewall	10%
,	Length - Height					3.0	20			
						Total:	40	no more than 75%		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical	openings ==	l avterior:	vertical sees ==	unicat	ions protected with a r	minimum o	(1) hr rating?	NO	
TIME RESISTANT BOILDING	Are vertical	openings and	a exterior v	rei titai comm	iuiiiCdT	ions protected with a f	um one	(±) III Tating?	140	
CALCULATIONS	C =	1.5		Wood Fr	ame					
	A =	402	m2	Total					STOREY AREAS m2	
	F =	6616	L/min						402	
Round to Nearest 1000 L/min	F =	7000	L/min	must be	> 200	00 L/min			0	
CORRECTION FACTORS:									0	
OCCUPANCY		-1050	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY		5950	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2380	L/min							
REQUIRED FIRE FLOW	F =	8330	L/min							
Round to Nearest 1000 L/min	F=	8000	L/min	2113	usgm					
	F =	133	L/sec							

Jan. 17, 2022

500 Holland Street W., Bradford ON. Re:

Fire Protection Water Supply Requirement for Part 3 of O.B.C.

The proposed commercial building at 500 Holland Street W., Bradford ON. is a Seniors apartment building. The entire building is of combustible construction, sprinklered.

The site and building is serviced by municipal water supply (Water flow and pressure test attached)

Existing Site (attached)

The Subject Site is located on the (short description of site and surrounding areas)

To the North: Vacant Land

To the East: Existing Grocery Store To the West: Langford Blvd To the South: Miller Park Ave

Calculation: Q=KVStot

K: building construction classification

V: building volume

Stot: building property line distances

Stot = $1+ \Sigma$ Stot

Building classifications by group:

Apartment Building: C (K=18)

Building Volume:

24,625 m3

Building multiple exposures:

18.1 m; Stot = 0

27.6 m; Stot =0

3.0 m1.5m, Stot=0.5

26.5 m, Stot = 0

Stot = 1+0+0+0.5+0

Jain Sustainability Consultants Inc. 7405 East Danbro Crescent, Mississauga, Ontario, L5N 6P8 Canada

thinking globally, delivering locally

(905) 285-9900 ((905) 567-5246 (9) mail@jainconsultants.com www. jainconsultants.com @

Q=18 x 24,626 m3 x 1.5

Q=664,902 m3

According to Fire protection Water Supply guideline for Part 3 of OBC A3.2.5.7, Table 2:

Minimum water supply flow rate for Q≥270,000

Required water supply shall be 9000 L/min (150 L/sec)

Conclusion:

Municipal water supply graph shows sufficient flow and pressure used for sprinkler and inside and outside hose stream requirement as referenced by Article 3.2.5.13 of the Building Code and NFPA 13.

Yours very truly,

D. Jain, M.Eng., M.B.A., P.Eng., C.E.M., L.A.P.

Enclosures

- Site Plan
- 2. Water flow and pressure test

Fire Flow Testing Report

Residual Hydrant # NFPA Colour Code

HY BLUE

January 25, 2022

ADDRESS

CONTACT INFO

79 Henderson Street

Angela Mariani Nautical Lands Group

T: (905) 683-1261 E: angela@nigc.comm

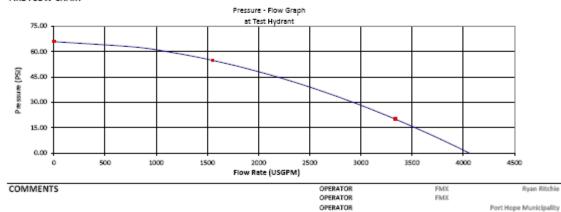
Port Hope, ON L1A 2G3

RESIDUAL HYDRANT INFO.

HYDRANT # N.F.P.A. COLOUR CODE

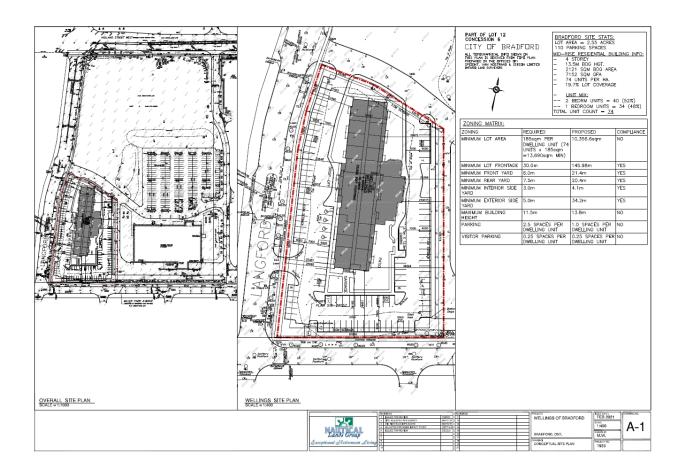
STATIC PRESSURE RESIDUAL PRESSURE

PRESSURE DROP 11.1 16.8


Flow on Water Main At Test Hydrant -3338 USGPM 20 psi

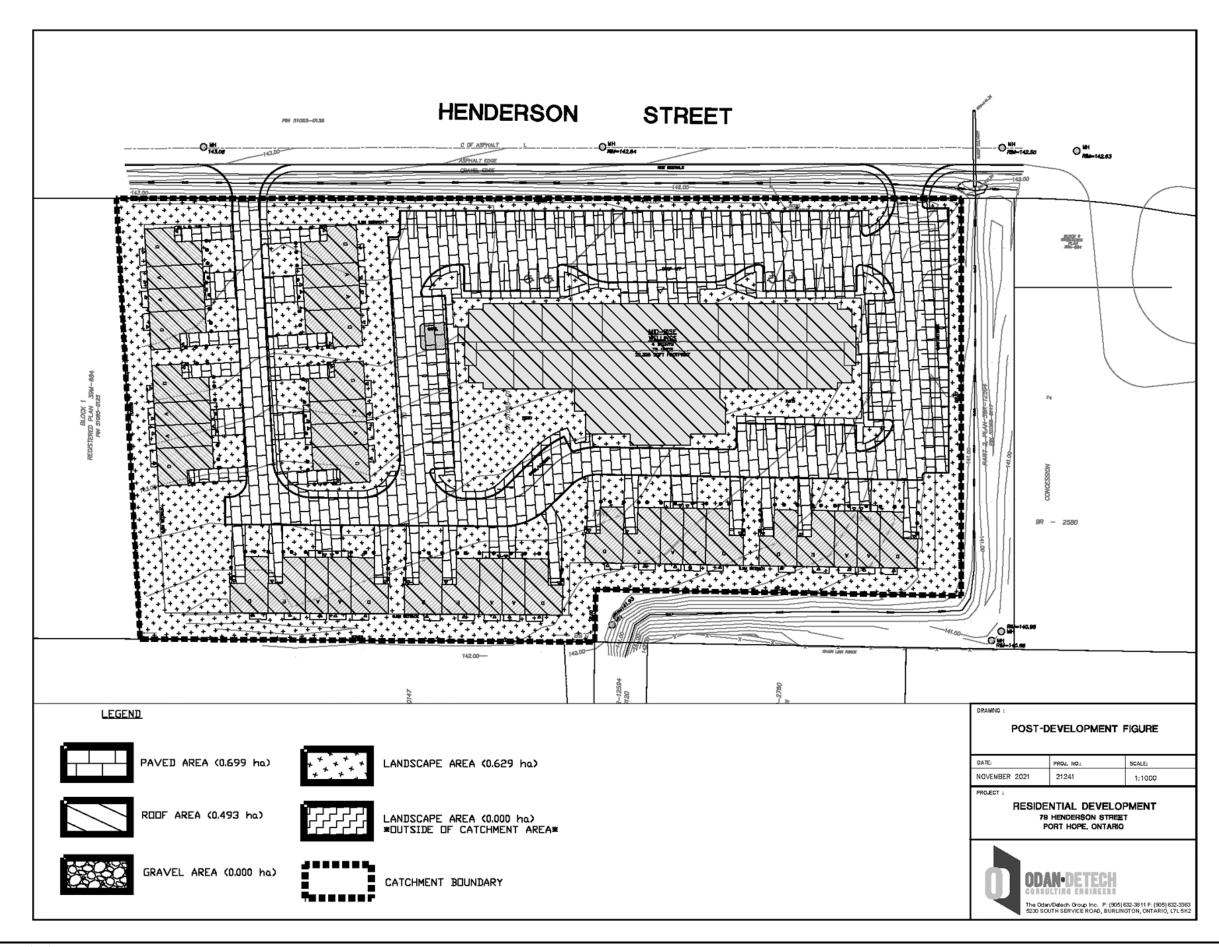
BLUE

FLOW HYDRANT(S) INFO.


HYDRANT	HYD.	OUTLET	NOZZLE	DIFFUSER	DIFFUSER	PITOT	PITOT	FLOW
ASSET		DIAMETER	COEFFICIENT	TYPE	COEFFICIENT	READING	FLOW	METER
ID	PORTS	(INCHES)				(psi)	(USGPM)	(USGPM)
ну		2.5	Round	LPD250	0.90	26.3	775	0
mr	2	2.5	Round	LPD250	0.90	26.3	775	0
	•	•	•		Total Flow (USGPM)	1549	0
				l	Total Floor (US/CDA)	th.	4.5	40

FIRE FLOW CHART

Copy of NauticalLandsGroup_FireFlowTesting_HendersonSt_PortHope


"If we don't measure it, how do you manage it?"

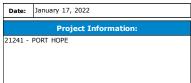
APPENDIX D

PRE-DEVELOPMENT STORM DRAINAGE AREA PLAN
POST-DEVELOPMENT STORM DRAINAGE AREA PLAN
STAGE/STORAGE/DISCHARGE CALCULATION SHEETS
CULTEC DESIGN SHEET
VISUAL OTTHYMO MODEL-Pre-Development
VISUAL OTTHYMO MODEL-Post-Development
VISUAL OTTHYMO OUTPUT-Pre-Development
VISUAL OTTHYMO OUTPUT-Post-Development

ORIFICE DISCHARGE CALCULATOR

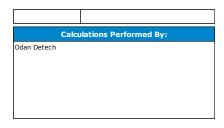
This program calculates the discharge from a circular orifice when given elevations and orifice diameters by the user.

Discharge based on orifice equation: $Q = CA \times sqrt(2gh)$


Area	iameter = e Coeff. =	0.100 0.00785 0.620	m ← m2	Enter the orifice diameter in metres Enter discharge Coeff. to use Orifice Plate
Elev.	Head (m)	Q (m3/s)	Total Storage(m3)	_
140.56	0	0.0000	0	
141.20	0.64	0.0173	146.36	
141.40	0.84	0.0198	275.50	
141.60	1.04	0.0220	406.90	
141.80	1.24	0.0240	539.00	
142.00	1.44	0.0259	665.80	
142.20	1.64	0.0276	788.50	
142.40	1.84	0.0293	906.70	

Stage – Total Storage Table										
	Storage									
Elevation	Two Chambers	Pond	Manholes	Total	Total					
m	m3	m3	m3	m3	(ha.m)					
140.9	0	0	0	0	0					
141.2	65.8	76.26	4.3	146.36	0.014636					
141.4	118.8	149.7	7.0	275.5	0.02755					
141.6	168.8	228.4	9.7	406.9	0.04069					
141.8	214.0	312.5	12.5	539	0.0539					
142.0	248.4	402.2	15.2	665.8	0.06658					
142.2	273.0	497.6	17.9	788.5	0.07885					
142.4	287.0	599.1	20.6	906.7	0.09067					

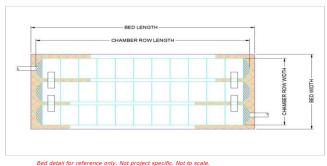
	РО	ND – Stage	Storage Tabl	е		
ELEV.	Area	Depth (H)	Conic Inc. Vol.	Conic Total Vol.		
	m2	m	m3	m3		
140.9	0	N/A	N/A	0		
141.0	330.89	0.069	7.61	7.61		
141.1	342.88	0.1	33.69	41.30		
141.2	355.14	0.1	34.90	76.20		
141.3	367.66	0.1	36.14	112.33		
141.4	380.45	0.1	37.40	149.74		
141.5	393.49	0.1	38.70	188.43		
141.6	406.80	0.1	40.01	228.45		
141.7	420.38	0.1	41.36	269.80		
141.8	434.22	0.1	42.73	312.53		
141.9	448.32	0.1	44.12	356.66		
142.0	462.68	0.1	45.55	402.20		
142.1	477.31	0.1	47.00	449.20		
142.2	492.20	0.1	48.47	497.68		
142.3	507.35	0.1	49.98	547.65		
142.4	522.77	0.1	51.50	599.16		



CULTEC Stormwater Design Calculator

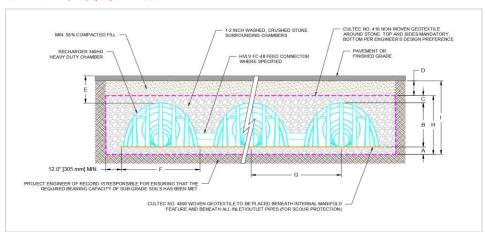
RECHARGER 360HD

Recharger 360HD Chamber Specifications							
Height	914	mm					
Width	1524	mm					
Length	1.27	meters					
Installed Length	1.12	meters					
Bare Chamber Volume	1.04	cu. meters					
Installed Chamber Volume	1.81	cu. meters					


Breakdown of Stora Recharger 360HD St	
Within Chambers	72.35 cu. meters
Within Feed Connectors	0.78 cu. meters
Within Stone	70.85 cu. meters
Total Storage Provided	144.0 cu. meters
Total Storage Required	120.00 cu. meters

Materials List

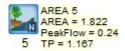
Recharger 360HD									
Total Number of Chambers Required	64	pieces							
Chamber Units	64	pieces							
End Caps	32	pieces							
HVLV FC-48 Feed Connectors	30	pieces							
CULTEC No. 410 Non-Woven Geotextile	560	sq. meters							
CULTEC No. 4800 Woven Geotextile	59	meters							
Stone	177	cu. meters							


Based on 2 Internal Manifolds

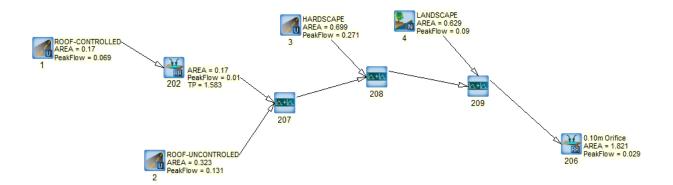
Bed Detail

Bed Layout Information										
Number of Rows Wide	16	pieces								
Number of Chambers Long	4	pieces								
Chamber Row Width	28.96	meters								
Chamber Row Length	5.24	meters								
Bed Width	29.57	meters								
Bed Length	5.85	meters								
Bed Area Required	172.84	sq. meters								
Length of Separator Row	N/A	meters								

Bed detail for reference only. Not project specific. Not to scale.


Conceptual graphic only. Not job specific.

CLICK FOR STAGE-STORAGE REPORT


	Cross Section Table Reference		
Α	Depth of Stone Base	229	mm
В	Chamber Height	914	mm
С	Depth of Stone Above Units	305	mm
D	Depth of 95% Compacted Fill	305	mm
E	Max. Depth Allowed Above the Chamber	3.66	meters
F	Chamber Width	1524	mm
G	Center to Center Spacing	1.83	meters
н	Effective Depth	1.45	meters
I	Bed Depth	1.75	meters

Recharger 360HD Incremental Storage Volumes]					
leight o	of System	Chambe	r Volume	HVLV Feed Connect	or Volume	Stone V	olume/	Cumulative Volu		Total Cum Storage V		Eleva	ation	
in	mm	ft³	m ³	ft3	m3	ft³	m³	ft³	m³	ft ³	m³	ft	m	
57.0	1448	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	5067.84	143.50	4.750	142.29	Top of Stone Elevatio
56.0	1422	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	5005.82	141.75	4.670	142.26	
55.0	1397	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	4943.81	139.99	4.580	142.24	
54.0	1372	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	4881.79	138.24	4.500	142.21	
3.0	1346	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	4819.78	136.48	4.420	142.19	
52.0	1321	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	4757.76	134.72	4.330	142.16	
1.0	1295	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	4695.75	132.97	4.250	142.14	
50.0	1270	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	4633.73	131.21	4.170	142.11	
49.0	1245	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	4571.71	129.46	4.080	142.08	
18.0	1219	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	4509.70	127.70	4.000	142.06	
17.0	1194	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	4447.68	125.94	3.920	142.03	
16.0	1168	0.0	0.0	0.0	0.0	62.0	1.8	62.015 65.290	1.8	4385.67	124.19 122.43	3.830 3.750	142.01	Top of Chamber Flavor
15.0 14.0	1143 1118	5.5 11.5	0.2 0.3	0.0 0.0	0.0 0.0	59.8 57.4	1.7 1.6	68.937	1.8 2.0	4323.65 4258.36	122.43	3.750 3.670	141.98 141.96	Top of Chamber Eleva
13.0	1092	17.2	0.5	0.0	0.0	55.2	1.6	72.312	2.0	4189.43	118.63	3.580	141.98	
12.0	1067	28.7	0.8	0.0	0.0	50.5	1.4	79.249	2.2	4117.12	116.58	3.500	141.91	
1.0	1041	36.3	1.0	0.0	0.0	47.5	1.3	83.769	2.4	4037.87	114.34	3.420	141.88	
10.0	1016	42.0	1.2	0.0	0.0	45.2	1.3	87.205	2.5	3954.10	111.97	3.330	141.86	
39.0	991	46.8	1.3	0.0	0.0	43.3	1.2	90.091	2.6	3866.89	109.50	3.250	141.83	
8.0	965	51.0	1.4	0.0	0.0	41.6	1.2	92.612	2.6	3776.80	106.95	3.170	141.81	
37.0	940	54.7	1.6	0.0	0.0	40.1	1.1	94.864	2.7	3684.19	104.32	3.080	141.78	
6.0	914	58.1	1.6	0.0	0.0	38.8	1.1	96.905	2.7	3589.33	101.64	3.000	141.75	
35.0	889	61.3	1.7	0.0	0.0	37.5	1.1	98.776	2.8	3492.42	98.89	2.920	141.73	
34.0	864	64.1	1.8	0.0	0.0	36.4	1.0	100.498	2.8	3393.65	96.10	2.830	141.70	
33.0	838	67.1	1.9	0.0	0.0	35.2	1.0	102.289	2.9	3293.15	93.25	2.750	141.68	
2.0	813	69.6	2.0	0.0	0.0	34.2	1.0	103.780	2.9	3190.86	90.35	2.670	141.65	
31.0	787	71.9	2.0	0.0	0.0	33.2	0.9	105.171	3.0	3087.08	87.42	2.580	141.63	
30.0 29.0	762 737	74.1	2.1	0.0 0.0	0.0	32.4 31.5	0.9 0.9	106.482 107.719	3.0 3.1	2981.91	84.44	2.500	141.60	
8.0	737	76.2 78.1	2.2 2.2	0.0	0.0	30.8	0.9	107.719	3.1	2875.43 2767.71	81.42 78.37	2.420 2.330	141.58 141.55	
7.0	686	80.0	2.2	0.0	0.0	30.0	0.9	110.002	3.1	2658.82	75.29	2.250	141.53	
6.0	660	81.4	2.3	0.0	0.0	29.4	0.8	110.870	3.1	2548.81	72.17	2.170	141.50	
25.0	635	83.1	2.4	0.0	0.0	28.8	0.8	111.877	3.2	2437.94	69.03	2.080	141.48	
4.0	610	84.7	2.4	0.0	0.0	28.1	0.8	112.842	3.2	2326.07	65.87	2.000	141.45	
3.0	584	86.2	2.4	0.0	0.0	27.5	0.8	113.760	3.2	2213.22	62.67	1.920	141.42	
2.0	559	87.7	2.5	0.0	0.0	26.9	0.8	114.636	3.2	2099.46	59.45	1.830	141.40	
1.0	533	88.8	2.5	0.0	0.0	26.5	0.8	115.282	3.3	1984.83	56.20	1.750	141.37	
0.0	508	90.1	2.6	0.0	0.0	26.0	0.7	116.085	3.3	1869.55	52.94	1.670	141.35	
9.0	483	91.4	2.6	0.0	0.0	25.5	0.7	116.854	3.3	1753.46	49.65	1.580	141.32	
8.0	457	92.3	2.6	0.0	0.0	25.1	0.7	117.399	3.3	1636.61	46.34	1.500	141.30	
7.0	432	93.5	2.6	0.0	0.0	24.6	0.7	118.103	3.3	1519.21	43.02	1.420	141.27	
6.0	406	94.6	2.7	0.0	0.0	24.2	0.7	118.779	3.4	1401.11	39.67	1.330	141.25	
5.0 4.0	381 356	95.7 96.4	2.7	0.0 0.0	0.0	23.7 23.5	0.7 0.7	119.424 119.855	3.4 3.4	1282.33 1162.90	36.31 32.93	1.250 1.170	141.22 141.20	
.4.0 .3.0	330	96.4 97.4	2.7 2.8	0.0	0.0	23.5	0.7	119.855	3.4 3.4	1043.05	32.93 29.54	1.170	141.20	
2.0	305	98.0	2.8	0.0	0.0	22.8	0.7	120.823	3.4	922.60	26.13	1.000	141.17	
1.0	279	98.9	2.8	0.0	0.0	22.4	0.6	121.373	3.4	801.78	22.70	0.920	141.14	
0.0	254	100.4	2.8	0.0	0.0	21.8	0.6	122.268	3.5	680.41	19.27	0.830	141.09	
9.0	229	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	558.14	15.80	0.750	141.07	Bottom of Chamber Ele
3.0	203	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	496.12	14.05	0.670	141.04	
7.0	178	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	434.11	12.29	0.580	141.02	
5.0	152	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	372.09	10.54	0.500	140.99	
5.0	127	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	310.08	8.78	0.420	140.97	
1.0	102	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	248.06	7.02	0.330	140.94	
3.0	76	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	186.05	5.27	0.250	140.92	
2.0	51	0.0	0.0	0.0	0.0	62.0	1.8	62.015	1.8	124.03	3.51	0.170	140.89	
1.0	25 0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	62.0 0.0	1.8 0.0	62.015 0.000	1.8 0.0	62.02 0.00	1.76 0.00	0.080 0.000	140.87 140.84	Bottom of Stone Eleva

VISUAL OTTHYMO MODEL-Pre-Development

VISUAL OTTHYMO MODEL-Post-Development

VISUAL OTTHYMO OUTPUT-Pre-Development

```
V V I SSSSS U U A L
V V I SS U U AA L
V V I SS U U AAAAA L
V V I SS U U A A L
VV I SSSSS UUUUU A A LLLLL
OOO TTTTT TTTTT H H Y Y M M OOO
O O T T H H Y Y MM MM O O O O T T H H Y Y M M O O
```

Developed and Distributed by Clarifica Inc. Copyright 1996, 2007 Clarifica Inc. All rights reserved.

***** DETAILED OUTPUT *****

** SIMULATION NUMBER: 2 **

| CHICAGO STORM | IDF curve parameters: A=2464.000 B= 16.000 | Ptotal= 37.70 mm | C = 1.000used in: INTENSITY = $A / (t + B)^C$

> Duration of storm = 3.00 hrsStorm time step = 10.00 min

Time to peak ratio = .33

TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN .50 3.95 | 1.33 17.18 | 2.17 2.60 | 3.00 1.00 .67 8.18 | 1.50 9.92 | 2.33 2.06 | .83 27.06 | 1.67 6.46 | 2.50 1.68 |

```
| CALIB
| NASHYD (0005) | Area (ha)= 1.82 Curve Number (CN)= 80.0 | ID= 1 DT=10.0 min | Ia (mm)= 5.00 # of Linear Res.(N)= 3.00 | U.H. Tp(hrs)= .20
```

Unit Hyd Qpeak (cms) = .348 TIME TO PEAK (bro) PEAK FLOW (cms) = .075 (i)
TIME TO PEAK (hrs) = 1.167
RUNOFF VOLUME (mm) = 10.824 TOTAL RAINFALL (mm) = 37.696 RUNOFF COEFFICIENT = .287

```
*******
 ** SIMULATION NUMBER: 6 **
| CHICAGO STORM | IDF curve parameters: A=5588.000
                                   B= 28.000
| Ptotal= 80.54 mm |
                                           C = 1.000
_____
                      used in: INTENSITY = A / (t + B)^C
                       Duration of storm = 3.00 \text{ hrs}
                       Storm time step = 10.00 \text{ min}
                       Time to peak ratio = .33
                TIME
                      RAIN | TIME RAIN | TIME RAIN | TIME RAIN
                 hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                     5.26 | 1.00 147.05 | 1.83 14.14 | 2.67 4.81
                 .17
                 .33 7.73 | 1.17 77.70 | 2.00 10.82 | 2.83 4.10
.50 12.46 | 1.33 43.43 | 2.17 8.55 | 3.00 3.54
.67 23.45 | 1.50 27.74 | 2.33 6.93 |
                 .83 60.52 | 1.67 19.25 | 2.50 5.73 |
I CALTB
| NASHYD (0005) | Area (ha)= 1.82 Curve Number (CN)= 80.0 | ID= 1 DT=10.0 min | Ia (mm)= 5.00 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs) = .20
    Unit Hyd Qpeak (cms) = .348
    PEAK FLOW
                  (cms) = .240 (i)
    TIME TO PEAK (hrs) = 1.167
RUNOFF VOLUME (mm) = 39.971
TOTAL RAINFALL (mm) = 80.536
    RUNOFF COEFFICIENT = .496
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
FINISH
______
```

PROJECT NO. 21241 (PH)

VISUAL OTTHYMO OUTPUT-Post-Development

```
______
             I
                  SSSSS U U
                               A
                                     L
                 SSSSS U U A L
SS U U AAAAA L
SS U U AAAAA L
        V I
      V
      V V I
                  SS U U A A L
       V V I
       VV
             I SSSSS UUUUU A A LLLLL
      OOO TTTTT TTTTT H H Y Y M M OOO
      O O T T H H Y Y M M O O
O O T T H H Y Y M MO O
       000
            T
                  T H H Y M M OOO
Developed and Distributed by Clarifica Inc.
Copyright 1996, 2007 Clarifica Inc.
All rights reserved.
                 ***** DETAILED OUTPUT *****
______
 ** SIMULATION NUMBER: 2 **
| CHICAGO STORM | IDF curve parameters: A=2464.000
                    B= 16.000
C= 1.000
| Ptotal= 37.70 mm |
-----
                     used in: INTENSITY = A / (t + B)^C
                     Duration of storm = 3.00 \text{ hrs}
                     Storm time step = 10.00 \text{ min}
                     Time to peak ratio = .33
               TIME
                    RAIN | TIME RAIN | TIME RAIN | TIME RAIN
               hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr

    1.53 | 1.00
    94.77 | 1.83
    4.54 | 2.67
    1.39

    2.32 | 1.17
    36.99 | 2.00
    3.37 | 2.83
    1.17

    3.95 | 1.33
    17.18 | 2.17
    2.60 | 3.00
    1.00

                .17
                .33
                .50
                     8.18 | 1.50 | 9.92 | 2.33 | 2.06 |
                .67
                .83 27.06 | 1.67 6.46 | 2.50 1.68 |
l CALIB
| NASHYD (0004) | Area (ha)= .63 Curve Number (CN)= 80.0 | ID= 1 DT= 5.0 min | Ia (mm)= 5.00 # of Linear Res.(N)= 3.00
                   U.H. Tp(hrs) = .17
```

---- TRANSFORMED HYETOGRAPH ----

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

```
TIME RAIN | TIME RAIN | TIME RAIN | TIME
                 hrs mm/hr | 083 1.53 | 0.833 27.06 | 1.583 6.46 | 2.33 2.06
                           1.53 | .917 94.77 | 1.667 6.46 | 2.42 1.68
                  .167
                                                                                                  1.68
                  .250
                             2.32 | 1.000 | 94.77 | 1.750 | 4.54 | 2.50

      2.32 | 1.083
      36.99 | 1.833
      4.54 | 2.58
      1.39

      3.95 | 1.167
      36.99 | 1.917
      3.37 | 2.67
      1.39

                  .333
                  .417
                  .500 3.95 | 1.250 17.18 | 2.000 3.37 | 2.75 1.17
                  .583 8.18 | 1.333 17.18 | 2.083 2.60 | 2.83 1.17

      .667
      8.18 | 1.417
      9.92 | 2.167
      2.60 | 2.92
      1.00

      .750
      27.06 | 1.500
      9.92 | 2.250
      2.06 | 3.00
      1.00

Unit Hyd Qpeak (cms) = .141
PEAK FLOW (cms)= .029 (i)
TIME TO PEAK (hrs)= 1.167
RUNOFF VOLUME (mm)= 11.073
TOTAL RAINFALL (mm)= 37.696
RUNOFF COEFFICIENT = .294
(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

```
| STANDHYD (0003) | Area (ha) = .70
|ID= 1 DT= 5.0 min | Total Imp(%) = 90.00 Dir. Conn.(%) = 90.00
                                                  IMPERVIOUS PERVIOUS (i)
       Surface Area (ha) = .63 .07

Dep. Storage (mm) = 1.00 1.00

Average Slope (%) = 1.00 2.00

Length (m) = 68.30 40.00

Mannings n = .013 .250
       Max.Eff.Inten.(mm/hr) = 94.77 30.60

over (min) 5.00 10.00

Storage Coeff. (min) = 2.08 (ii) 5.07 (ii)

Unit Hyd. Tpeak (min) = 5.00 10.00

Unit Hyd. peak (cms) = .31 .16
                                                                                                      *TOTALS*
                                                                            .01
1.08
13.44
        PEAK FLOW (cms) = .16
TIME TO PEAK (hrs) = 1.00
RUNOFF VOLUME (mm) = 36.70
TOTAL RAINFALL (mm) = 37.70
RUNOFF COEFFICIENT = .97
                                                                                                          .169 (iii)
                                                            .16
                                                                                                             1.00
                                                                                                         34.37
37.70
                                                                              37.70
                                                                                .36
```

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 80.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| STANDHYD (0001) | Area (ha) = .17 |ID= 1 DT= 5.0 min | Total Imp(%) = 99.00 Dir. Conn.(%) = 99.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) = .17 .00

Dep. Storage (mm) = 1.00 1.00

Average Slope (%) = 1.00 2.00

Length (m) = 33.70 40.00

Mannings n = .013 .250

```
Max.Eff.Inten.(mm/hr) = 94.77 152.99

over (min) 5.00 5.00

Storage Coeff. (min) = 1.36 (ii) 2.51 (ii)

Unit Hyd. Tpeak (min) = 5.00 5.00

Unit Hyd. neak (cms) = 33 29
       Unit Hyd. peak (cms) =
                                                  .33
      ### FLOW (cms) = .04 .00

TIME TO PEAK (hrs) = 1.00 1.00

RUNOFF VOLUME (mm) = 36.70 13.44

TOTAL RAINFALL (mm) = 37.70 37.70

RUNOFF COEFFICIENT = .97
                                                                                     *TOTALS*
                                                                                    .044 (iii)
                                                                                         1.00
                                                                                       36.46
37.70
                                                                                        .97
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
          (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                 CN^* = 80.0 Ia = Dep. Storage (Above)
         (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
               THAN THE STORAGE COEFFICIENT.
       (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

| STANDHYD (0002) | Area (ha) = .32|ID= 1 DT= 5.0 min | Total Imp(%)= 99.00 Dir. Conn.(%)= 99.00 Surface Area (ha) = .32 .00

Dep. Storage (mm) = 1.00 1.00

Average Slope (%) = 1.00 2.00

Length (m) = 46.40 40.00

Mannings n = .013 .250 IMPERVIOUS PERVIOUS (i) Max.Eff.Inten.(mm/hr) = 94.77 76.49 over (min) 5.00 5.00 Storage Coeff. (min) = 1.65 (ii) 2.79 (ii) Unit Hyd. Tpeak (min) = 5.00 5.00 Unit Hvd. peak (cms) = .32 .28 Unit Hyd. peak (cms) = .32 .28

PEAK FLOW (cms) = .08 .00

TIME TO PEAK (hrs) = 1.00 1.00

RUNOFF VOLUME (mm) = 36.70 13.44

TOTAL RAINFALL (mm) = 37.70 37.70

RUNOFF COEFFICIENT = .97 .36 *TOTALS* .084 (iii) 1.00 36.46 37.70 37.70

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 80.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| RESERVOIR (0202) | | IN= 2---> OUT= 1 | | DT= 5.0 min | OUTFLOW STORAGE | OUTFLOW STORAGE
 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 .0000
 .0000
 .0090
 .0080

 .0040
 .0040
 .0130
 .0130
 _____ AREA QPEAK TPEAK (ha) (cms) (hrs) (mm)

INFLOW: ID= 2 (0001) .170 .044 1.00 36.46

OUTFLOW: ID= 1 (0202) .170 .005 1.50 34.99

```
PEAK FLOW REDUCTION [Qout/Qin](%)= 10.52
TIME SHIFT OF PEAK FLOW (min)= 30.00
MAXIMUM STORAGE USED (ha.m.)= .0045
```

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

```
L RESERVOIR (0206) L
| IN= 2---> OUT= 1 |
                             OUTFLOW STORAGE | OUTFLOW STORAGE
| DT= 5.0 min |

    (cms)
    (ha.m.)
    | (cms)

    .0000
    .0000
    | .0240

    .0170
    .0146
    | .0260

    .0200
    .0276
    | .0280

    .0220
    .0407
    | .0290

                                                                            (ha.m.)
                                                                             .0539
                                                                               .0666
.0789
                                                                                .0907
                                                                                  R.V.
                                      AREA QPEAK (ha) (cms) 1.821 .273 1.821 .021
                                                                    TPEAK
                                                                (hrs)
                                                               1.00
1.92
                                                                                    (mm)
26.75
      INFLOW : ID= 2 (0209)
      OUTFLOW: ID= 1 (0206)
                                                                                     26.63
                        PEAK FLOW REDUCTION [Qout/Qin](%) = 7.66
                        TIME SHIFT OF PEAK FLOW (min) = 55.00
                        MAXIMUM STORAGE USED
                                                               (ha.m.) = .0337
```

```
******
 ** SIMULATION NUMBER: 6 **
| CHICAGO STORM |
                      IDF curve parameters: A=5588.000
| Ptotal= 80.54 mm |
                                           B = 28.000
                                           C= 1.000
                                INTENSITY = A / (t + B)^C
                      used in:
                      Duration of storm = 3.00 \text{ hrs}
                      Storm time step = 10.00 min
                      Time to peak ratio = .33
               TIME
                      RAIN | TIME
                                     RAIN | TIME
                                                    RAIN | TIME
                                                                   RAIN
                     mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr 5.26 | 1.00 147.05 | 1.83 14.14 | 2.67 4.81
                hrs
                 .17
                       7.73 | 1.17
                                    77.70 | 2.00
                                                    10.82 | 2.83
                                                                    4.10
                 . 33
                      12.46 | 1.33 43.43 | 2.17
                                                     8.55 | 3.00 3.54
                 .50
                 .67
                      23.45 | 1.50
                                     27.74 | 2.33
                                                    6.93 |
                 .83
                      60.52 | 1.67
                                    19.25 | 2.50
                                                     5.73 |
Area (ha) = .63 Curve Number (CN) = 80.0 Ia (mm) = 5.00 # of Linear Res.(N) = 3.00 U.H. Tp(hrs) = .17
|ID= 1 DT= 5.0 min |
______
        NOTE: RAINFALL WAS TRANSFORMED TO
                                          5.0 MIN. TIME STEP.
                             ---- TRANSFORMED HYETOGRAPH ----
                      RAIN | TIME RAIN | TIME RAIN | TIME
                TIME
                                                                    RAIN
                hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                .083
                       5.26 | .833 60.52 | 1.583 19.25 | 2.33
                .167
                                                    19.25 | 2.42
                       5.26 | .917 147.05 | 1.667
                                                                     5.73
                .250
                       7.73 | 1.000 | 147.05 | 1.750
                                                    14.14 | 2.50
                                                                     5.73
                       7.73 | 1.083
                .333
                                     77.70 | 1.833
                                                     14.14 |
                                                             2.58
                                                                     4.81
                     12.46 | 1.167
                                    77.70 | 1.917
                                                   10.82 | 2.67
                .417
                                                                    4.81
                .500 12.46 | 1.250 43.43 | 2.000 10.82 | 2.75
                                                                   4.10
                .583 23.45 | 1.333 43.43 | 2.083 8.55 | 2.83
                                                                   4.10
                .667
                      23.45 | 1.417
                                     27.74 | 2.167
                                                    8.55 | 2.92
                                                                     3.54
                .750
                      60.52 | 1.500
                                     27.74 | 2.250
                                                     6.93 | 3.00
                                                                     3.54
    Unit Hyd Qpeak (cms) =
                            .141
                           .090 (i)
1.167
    PEAK FLOW
                  (cms) =
    TIME TO PEAK
                   (hrs) =
    RUNOFF VOLUME (mm) = 40.891
TOTAL RAINFALL (mm) = 80.536
    RUNOFF COEFFICIENT = .508
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
| STANDHYD (0003) | Area
                          (ha) = .70
|ID= 1 DT= 5.0 min | Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
```

```
Max.Eff.Inten.(mm/hr) = 147.05 77.27
over (min) 5.00 5.00
Storage Coeff. (min) = 1.74 (ii) 4.25 (ii)
Unit Hyd. Tpeak (min) = 5.00 5.00
Unit Hyd. peak (cms) = .32 .23
                                                                          *TOTALS*
     PEAK FLOW (cms) = .26 .01
TIME TO PEAK (hrs) = 1.00 1.00
RUNOFF VOLUME (mm) = 79.54 44.23
TOTAL RAINFALL (mm) = 80.54 80.54
RUNOFF COEFFICIENT = .99 .55
                                                                          .271 (iii)
                                                                              1.00
                                                                            76.00
                                                                            80.54
                                                         .55
                                                                             .94
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
              CN^* = 80.0 Ia = Dep. Storage (Above)
        (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
             THAN THE STORAGE COEFFICIENT.
      (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| STANDHYD (0001) | Area (ha)= .17
|ID= 1 DT= 5.0 min | Total Imp(%)= 99.00 Dir. Conn.(%)= 99.00
     Max.Eff.Inten.(mm/hr) = 147.05 386.35

over (min) 5.00 5.00

Storage Coeff. (min) = 1.14 (ii) 2.10 (ii)

Unit Hyd. Tpeak (min) = 5.00 5.00

Unit Hyd. peak (cms) = .34 .31
                                                                         *TOTALS*
     PEAK FLOW (cms) = .07 .00
TIME TO PEAK (hrs) = 1.00 1.00
RUNOFF VOLUME (mm) = 79.54 44.23
TOTAL RAINFALL (mm) = 80.54 80.54
RUNOFF COEFFICIENT = .99 .55
                                                                           .069 (iii)
                                                                             1.00
                                                                            79.18
80.54
                                                                              .98
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
               CN^* = 80.0 Ia = Dep. Storage (Above)
        (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
             THAN THE STORAGE COEFFICIENT.
      (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

```
Max.Eff.Inten.(mm/hr) = 147.05 193.18

over (min) 5.00 5.00

Storage Coeff. (min) = 1.38 (ii) 2.34 (ii)

Unit Hyd. Tpeak (min) = 5.00 5.00

Unit Hyd. peak (cms) = .33 .30
                                                             *TOTALS*
    PEAK FLOW (cms) = .13 .00
TIME TO PEAK (hrs) = 1.00 1.00
RUNOFF VOLUME (mm) = 79.54 44.23
TOTAL RAINFALL (mm) = 80.54
RUNOFF COEFFICIENT = .99 .55
                                                              .131 (iii)
                                                                1.00
                                                              79.17
80.54
                                                                 .98
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
       (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
            CN^* = 80.0 Ia = Dep. Storage (Above)
      (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
           THAN THE STORAGE COEFFICIENT.
     (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| RESERVOIR (0202) |
| IN= 2---> OUT= 1 |
| DT= 5.0 min |
                       OUTFLOW STORAGE | OUTFLOW STORAGE

    (cms)
    (ha.m.)
    (cms)
    (ha.m.)

    .0000
    .0000
    .0090
    .0080

    .0040
    .0040
    | .0130
    .0130

                                AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) .170 .069 1.00 79.18 .170 .010 1.58 77.73
    INFLOW : ID= 2 (0001)
                                                                      79.18
    OUTFLOW: ID= 1 (0202)
                                                                      77.71
                   PEAK FLOW REDUCTION [Qout/Qin](%) = 14.30
                   TIME SHIFT OF PEAK FLOW (min) = 35.00
                                                  (ha.m.) = .0091
                   MAXIMUM STORAGE USED
-----
| ADD HYD (0207) |
1 + 2 = 3 |
                            AREA QPEAK TPEAK R.V.
        (mm)
         _____
         ID = 3 (0207): .49 .137 1.00 78.67
    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ADD HYD (0208) |
       | 1 + 2 = 3 |
```

ID = 3 (0208): 1.19 .409 1.00 77.10

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

| RESERVOIR (0206) | | IN= 2---> OUT= 1 |
 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 .0000
 .0000
 .0240
 .0539

 .0170
 .0146
 .0260
 .0666

 .0200
 .0276
 .0280
 .0789

 .0220
 .0407
 .0290
 .0907
 | DT= 5.0 min | AREA QPEAK (ha) (cms) AREA TPEAK (mm) (hrs) .471 1.821 1.821 INFLOW : ID= 2 (0209) 1.00 64.60 OUTFLOW: ID= 1 (0206) 2.67 64.48

PEAK FLOW REDUCTION [Qout/Qin](%)= 6.13
TIME SHIFT OF PEAK FLOW (min)=100.00
MAXIMUM STORAGE USED (ha.m.)= .0890

FINISH

Hydroworks Sizing Summary

Proposed Senior Living Residential Development 79 Henderson St, Port Hope

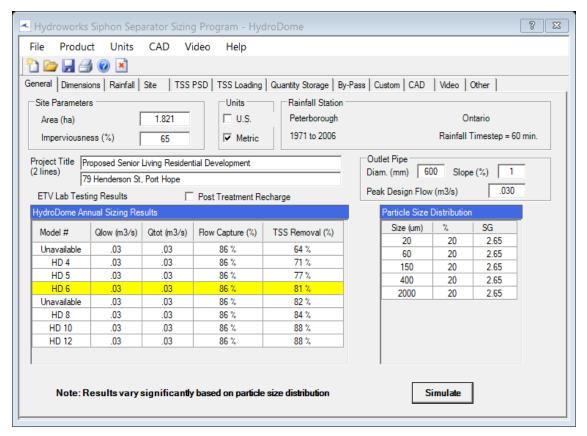
02-04-2022

Recommended Size: HydroDome HD 6

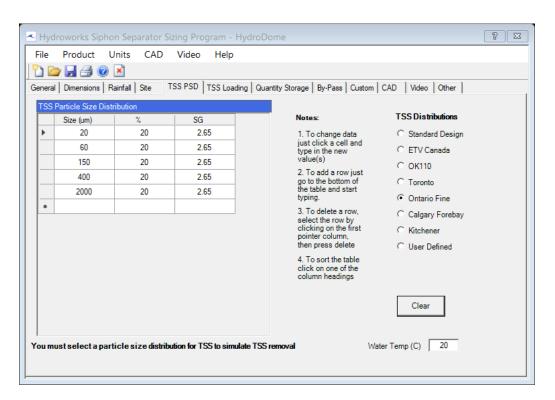
A HydroDome HD 6 is recommended to provide 80 % annual TSS removal based on a drainage area of 1.821 (ha) with an imperviousness of 65 % and Peterborough, Ontario rainfall for the 20 um to 2000 um particle size distribution.

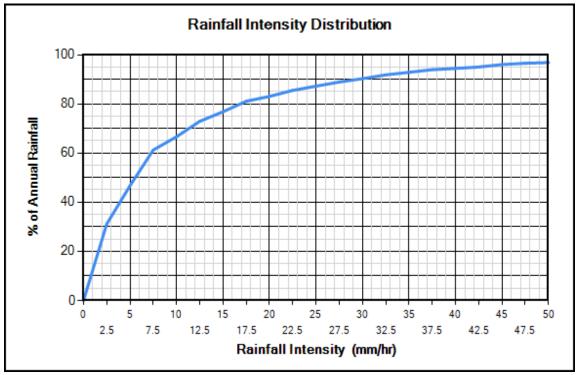
The recommended HydroDome HD 6 treats 86 % of the annual runoff and provides 81 % annual TSS removal for the Peterborough rainfall records and 20 um to 2000 um particle size distribution.

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of .03 (m3/s) Is less than the full pipe flow of 21.68 (m3/s) indicating free flow in the pipe during the peak flow assuming no tailwater condition. Partial pipe flow was assumed for the headloss calculations. The headloss was calculated to be 208 (mm) above the crown of the 600 (mm) outlet pipe.

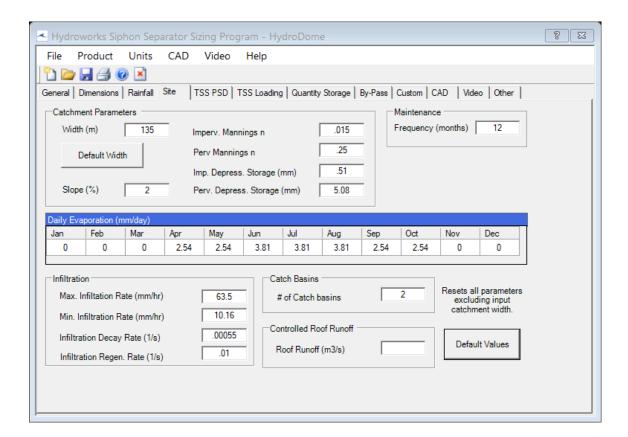

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact

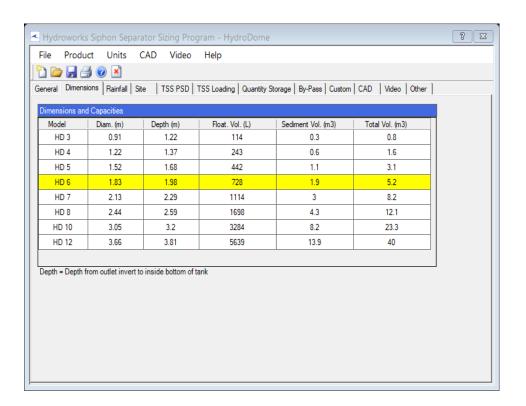

Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

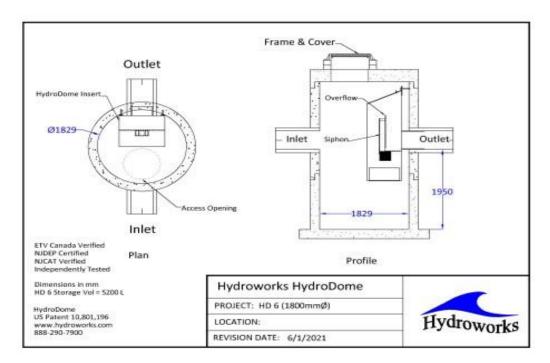

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

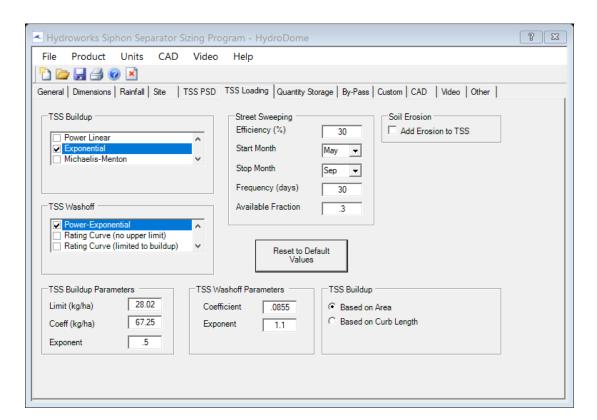
TSS Removal Sizing Summary

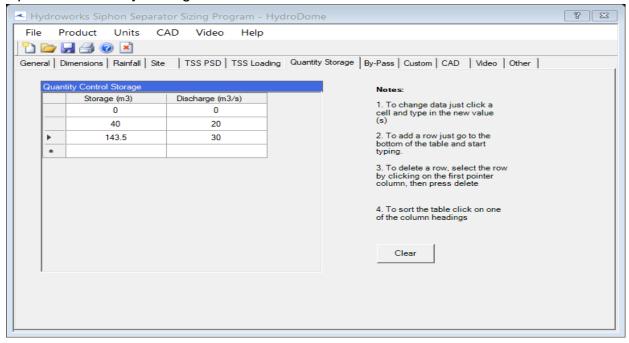


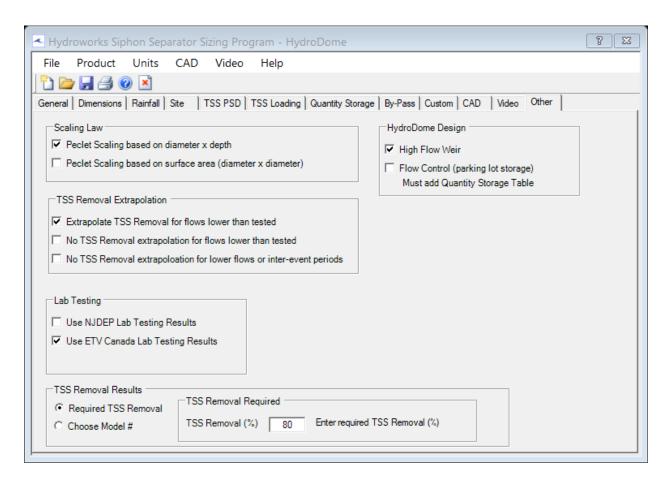
TSS Particle Size Distribution



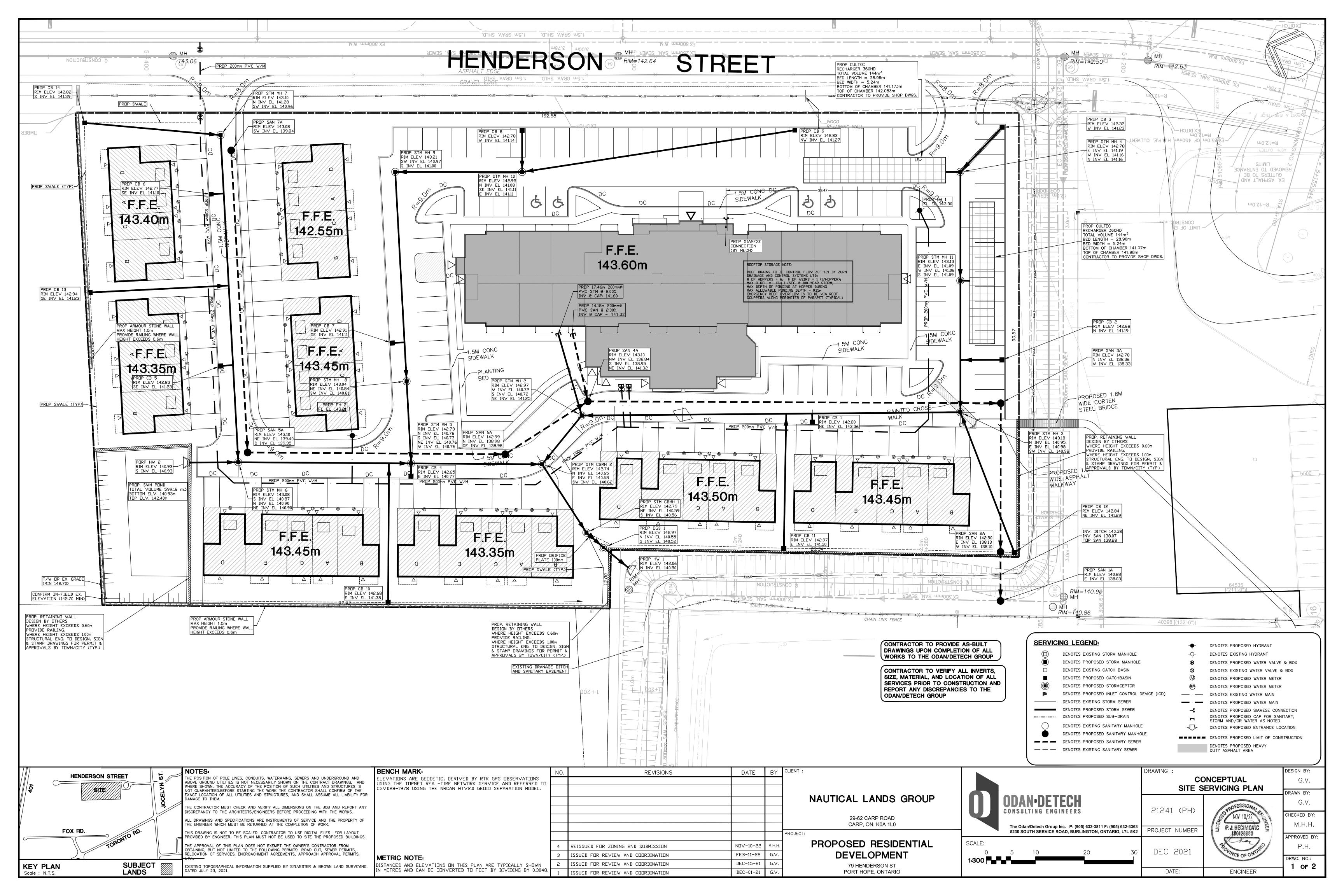

Site Physical Characteristics

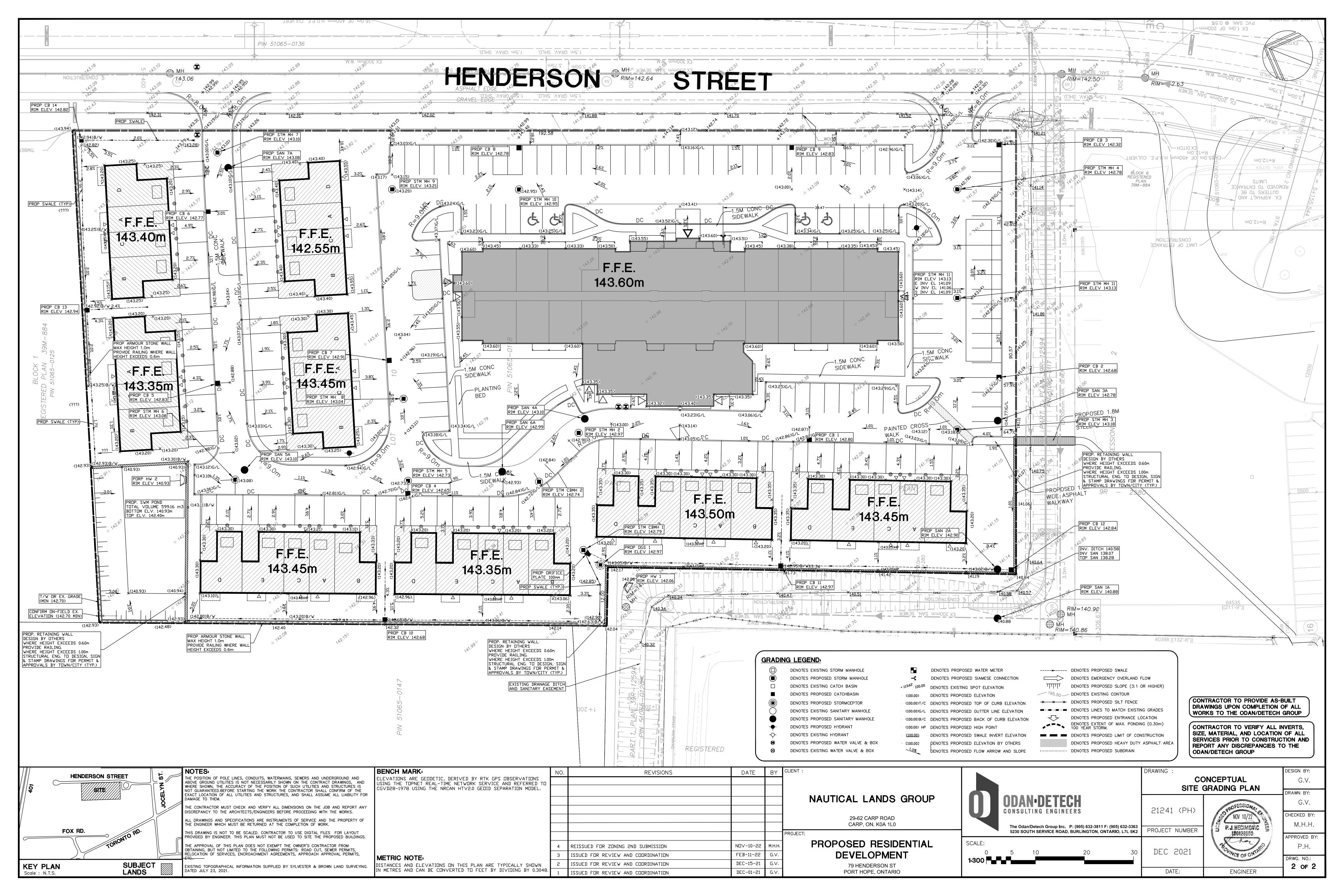

Dimensions And Capacities

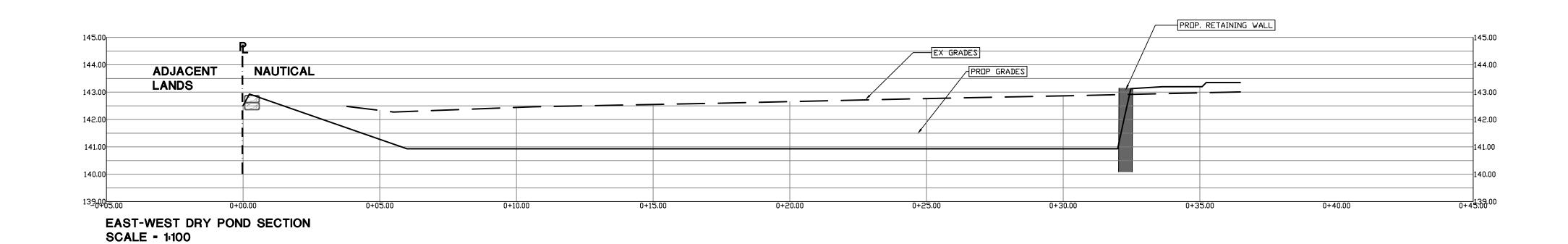

Generic HD 6 CAD Drawing

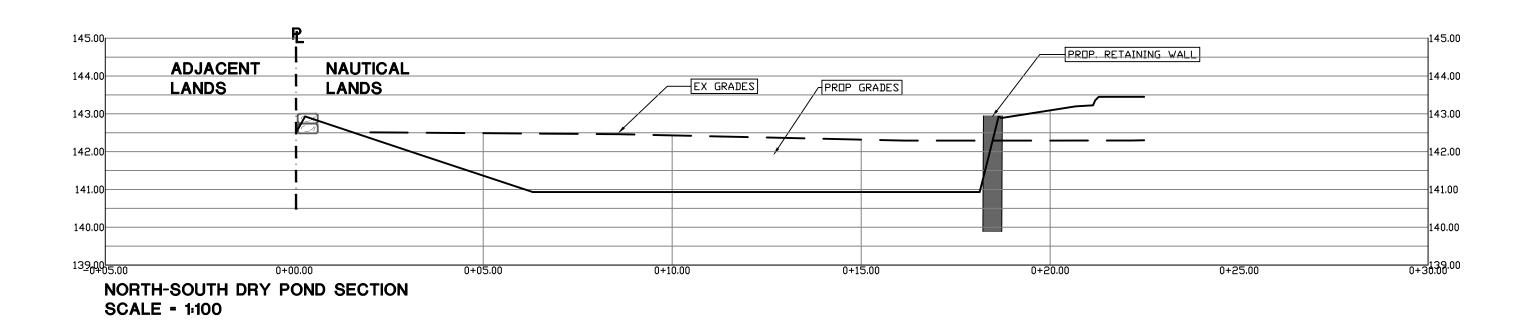

TSS Buildup And Washoff

Upstream Quantity Storage

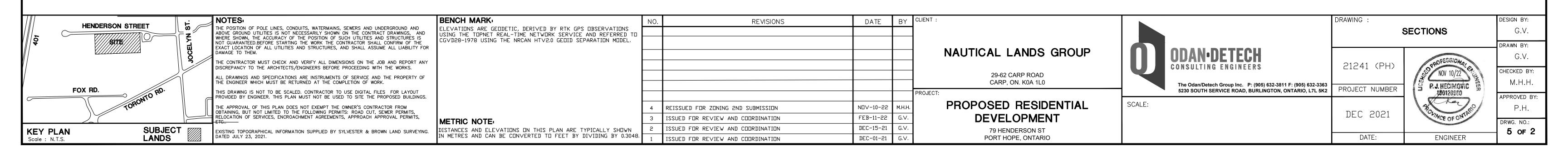

Other Parameters




Hydroworks Sizing Program - Version 5.5 Copyright Hydroworks, LLC, 2021


APPENDIX E

ODAN/DETECH GROUP ENGINEERING DRAWINGS
CONCEPT SITE SERVICING
CONCEPT SITE GRADING



PROFILE VIEW POND N-S

