

The Odan/Detech Group Inc.
P: (905) 632-3811
F: (905) 632-3363
5230, SOUTH SERVICE ROAD, UNIT 107
BURLINGTON, ONTARIO, L7L 5K2
www.odandetech.com

PROPOSED SENIOR LIVING RESIDENTIAL DEVELOPMENT 60 HENDERSON STREET PORT HOPE, ONTARIO

PROJECT No.: 21241(PH)

FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

OWNER:

NAUTICAL LANDS GROUP

Prepared By:

THE ODAN/DETECH GROUP INC.

1st Submission – January 2022

2st Submission – November 2022

3rd Submission – April 2023

Table	e of Contents	
1.0	BACKGROUND	1
2.0	SCOPE OF WORK	2
3.0	SERVICING DESIGN CONSIDERATIONS	2
3.1	Sanitary Wastewater Disposal	2
3.2	Water Distribution	5
3.3	Stormwater Management	10
4.0	EROSION CONTROL	15
5.0	CONCLUSIONS	15
	e 1 – Summary of Land Uses for Sanitary Flow Calculations	
Table	1 – Summary of Land Uses for Sanitary Flow Calculations	2
	e 3– Summary of Sanitary Flows from the Site	
	4– Existing Hydrant Pressure/Flow Conditions	
	5 – Total Water Demand for the Site – FUS	
Table	e 6 – Total Water Demand for the Site – OBC	9
Table	27 – Allowable Discharge	10
Table	8 – Catchment Characteristics for the Pre-Developed Site	11
Table	9 – Summary of Flows from Site-Pre-Development Condition	11
Table	10 – Storage Summary	12
Table	11 - Catchment Characteristics for the Post-Developed Site	13
Table	2 12 – Summary of Flows from Site	13
Table	2.13 – Summary Information	15

APPENDIX A - SITE

Aerial Photo of Existing Site Site Plan Site Statistics Topography of Existing Site

APPENDIX B - SANITARY

Sanitary Flow Calculations

APPENDIX C - WATER

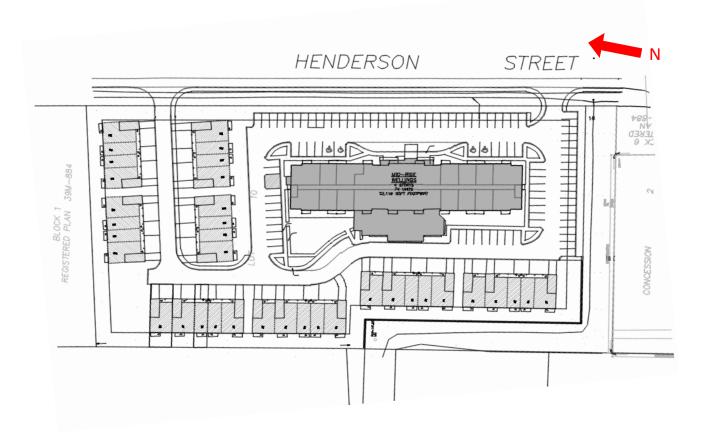
FUS Calculation Sheets
OBC Calculation prepared by Jain Sustainability Consultants Inc.
Fire Flow Testing Report

APPENDIX D - STORM

Pre-Development Storm Drainage Area Plan Post-Development Storm Drainage Area Plan Stage/Storage/Discharge Calculation Sheets Cultec Stormwater Sizing Sheets (if required) Visual OTTHYMO Model Visual OTTHYMO Output OGS Sizing Report

APPENDIX E

ODAN/DETECH Group Engineering Drawings Concept Site Servicing Concept Site Grading Cross Sections (Pond)


Note: This report is to be read with the Site Servicing and Site Grading Plans prepared by Odan/Detech.

1.0 BACKGROUND

The property under study is a 1.82 ha site located at 60 Henderson Street in Port Hope. The site is bounded by Henderson Street to the east, a grocery store to the south (Davis' Your Independent Grocer), Home Hardware Building Centre and vacant area to the west, and a vacant area to the north. Presently, the site is vacant land with vegetated cover. Refer to the Aerial Photo of the Existing Site in **Appendix A** for additional details.

It is proposed by Nautical Lands Group (NLG) to construct 36 new townhouses (no basements) and a 4-storey apartment building with 40 two-bedroom units and 34 one-bedroom units. The rest of the site will be comprised of surface parking and landscape. Refer to **Figure 1** below for further information regarding the proposed layout of the site.

In general, the property surface topography is higher in the north-east and slopes gently towards the south-west. For detailed topography of the existing site conditions, refer to **Appendix A** for the latest topographic survey prepared by Sylvester & Brown Land Surveying Ltd., dated July 23, 2021.

Figure 1 is an Excerpt from the Architectural Site Plan, prepared by NLG. For detailed information regarding the layout of the proposed development, please refer to the latest drawings prepared by NGL. For general existing site conditions see **Appendix A**.

2.0 SCOPE OF WORK

THE ODAN/DETECH GROUP INC. was retained by the owner, **Nautical Lands Group**, to review the site, collect data, evaluate the site for the proposed land use and present the findings in an Engineering Report.

This report will evaluate the serviceability of the site with respect to sanitary, water and storm services and also evaluate the stormwater management (SWM) strategy that will be implemented to meet the Municipality of Port Hope design criteria.

3.0 SERVICING DESIGN CONSIDERATIONS

3.1 Sanitary Wastewater Disposal

Existing Condition

On the east side of the subject property, an existing 250mm diameter PVC sanitary sewer is located in the middle of Henderson St, which flows southerly towards the service corridor, where it is connected to the a 300mm diameter PVC sanitary sewer. This continues to the south-west side of the subject property where an existing 300mm diameter PVC sanitary sewer is located within a service corridor that flows northerly. At the mid-west side of the property the sewer bends and continues to flow in a westerly direction to Fox Road.

A summary of the existing and proposed land uses for the sanitary flows which outlet to Fox Road are shown in Table 1 below.

Table 1 – Summary of Land Uses for Sanitary Flow Calculations						
		Commercial Residential				
Land Use	Site Area (ha)	Floor Area (m²)	Total Population	No. of Units	Total Population	
Existing	1.822	0	0	0	0	
Proposed	1.822	0	0	110	229	

i) Pre-Development Site

For calculating the population increase for the site, the existing population was assumed to be zero because the site is vacant land.

ii) Post-Development Site

The following Municipality of Port Hope standards for population densities and flow rates will be used to calculate the sanitary flows from the proposed development.

Residential:

- 1.4 persons/unit for 1 bedroom apartment
- 2.1 persons/unit for 2 bedroom apartment

Flow Rates:

• flow rate of 450 L/person/day – residential

The infiltration factor for the City is 0.26 L/s per hectare.

The above values are based on City of Toronto Design Guidelines as discussed with the Municipality of Port Hope Engineering Department.

Sanitary flows from the proposed development are summarized as follows.

Table 2– Calculated Sanitary Sewage Flows from Proposed Development					
Peak Flow from Site (L/s)	4.92				
Infiltration (L/s)	0.47				
Total = Peak Flow + Infiltration (L/s)	5.39				

Proposed Sanitary Servicing

Proposed Condition

The proposed development consists of a senior living residential apartment and related senior living townhomes. Refer to the Architectural Statistics in Appendix A are provided for on the Architectural Site Plan.

The proposed site will utilize the existing sanitary sewer located on the service corridor. The site will propose a 200mm diameter sewer to capture the flow from the proposed 36 new townhouses and 74 units 4-storey apartment building. The size of the outlet sewer will be confirmed by Mechanical at the time of detailed design, adjustments may be required at that time.

Based on the population and flow rates the proposed site will have a peak flow of 5.42 L/s. The calculations for the site sanitary flows are included in **Appendix B** and are summarized below in **Table 3.**

Table 3– Summary of Sanitary Flows from the Site					
Location of Outlet	Existing Peak Flow (I/s)	Proposed Peak Flow (l/s)			
Henderson Street	0	5.39			

3.2 Water Distribution

Existing Condition

There is an existing 300mm diameter ductile iron watermain located on the east side of Henderson Street.

There are existing public fire hydrants located on the Henderson Street of the subject site which cover a portion of said site.

Hydrant flow tests for the hydrants described have been performed by SCG process on January 21st of 2022 with the following results.

Table 4– Existing Hydrant Pressure/Flow Conditions					
Hydrant Location	Static Pressure (Psi)	Flow @ 20 Psi (USGPM)			
60 Henderson Street	65.9	3338			

Proposed Condition

It is proposed to connect the site to the existing 300mm diameter watermain located on Henderson Street for domestic and fire-fighting purposes. New 200mm fire & 100mm domestic will be provided to the site.

The unit rate and peaking factors of water consumption, minimum pipe size and allowable pressure in line were established from the Municipality of Port Hope Guidelines. The fire flow water demand is calculated as per FUS 1999 manual.

The pressures and volumes must be sufficient for peak hour conditions and under fire conditions as established by the Ontario Building Code 2006. The minimal residual pressure under fire conditions is 140 kpa. (or 20.3 psi).

The firefighting calculations are based on a fire resistive rating of a sprinklered building with protected steel.

Please refer to **Appendix C** for further details.

The water demand of the proposed site is calculated as follows:

Residential Water Demand

a)	Average Day domestic demand -	using 270L/cap/day	0.72 L/sec
		(229 persons, from sanitar	y calculations)
b)	Peak day demand -	1.8 x daily demand	1.30 L/sec
c)	Peak hour demand -	3.0 x daily demand	2.16 L/sec
d)	Fire flow (Fire Resistive)	•	301.3 L/sec

Table 5 -	. Total	Water	Demand	for the	Site -	FUS -
lable 5 =	· IUlai	vvalei	Demand	TOL LITE	one –	rus -

	Table 6 Total Water Belliand for the Gr	
	L/sec	USGM
Peak Day Demand	1.30	20.6
Fire Flow Demand	300	4755
Total Water Demand	301.3	4776
Actual Flow at 20 PSI Residual Pressure	210.6	3338

Based on the hydrant flow testing results and as determined using the FUS method for calculating fire flows the existing main is not sufficient to service the subject development. However, since the FUS is typically used for planning purposes the required fire flows will be based on the OBC at the detailed design stage to show that adequate flows are available to service the building.

In general, a residential development requires 150 l/sec (2,378 USGPM) for fire protection. The OBC fire flow calculation for a sprinklered building is provided on the next page based on the same building from a similar development. This shows the required fire flow for this building when sprinklered. The following was provided by Jain Sustainability Consultants Inc. for a similar site proposed in Bradford, Ontario. The full report prepared by JSCI can be found in Appendix

Jan. 17, 2022

Re: 500 Holland Street W., Bradford ON.

Fire Protection Water Supply Requirement for Part 3 of O.B.C.

The proposed commercial building at 500 Holland Street W., Bradford ON. is a Seniors apartment building. The entire building is of combustible construction, sprinklered.

The site and building is serviced by municipal water supply (Water flow and pressure test attached)

Existing Site (attached)

The Subject Site is located on the (short description of site and surrounding areas)

To the North: Vacant Land

To the East: Existing Grocery Store To the West: Langford Blvd To the South: Miller Park Ave

Calculation: Q=KVStot

K: building construction classification

V: building volume

Stot: building property line distances

Stot = 1+ Σ Stot

Building classifications by group:

Apartment Building: C (K=18)

Building Volume:

24,625 m³

Building multiple exposures:

18.1 m; Stot = 0

27.6 m; Stot =0

3.0 m1.5m, Stot=0.5

26.5 m, Stot = 0

Stot = 1+0+0+0.5+0

Jain Sustainability Consultants Inc. 7405 East Danbro Crescent, Mississauga, Ontario, L5N 6P8 Canada (905) 285-9900 (905) 567-5246 (905) 567-5246 (905) mail@jainconsultants.com (905) www. jainconsultants.com (905) 285-9900 (905

thinking globally, delivering locally

Q=18 x 24,626 m3 x 1.5

Q=664,902 m3

According to Fire protection Water Supply guideline for Part 3 of OBC A3.2.5.7, Table 2:

Minimum water supply flow rate for Q≥270,000

Required water supply shall be 9000 L/min (150 L/sec)

Conclusion:

Municipal water supply graph shows sufficient flow and pressure used for sprinkler and inside and outside hose stream requirement as referenced by Article 3.2.5.13 of the Building Code and NFPA 13.

Yours very truly,

D. Jain, M.Eng., M.B.A., P.Eng., C.E.M., L.A.P.

Enclosures

- 1. Site Plan
- 2. Water flow and pressure test

As can be seen above and based on the OBC the water demand can be adjusted as shown in Table 6;

	Table 6 – Total Water Demand for the Site – OBC -	
	L/sec	USGM
Peak Day Demand	1.30	20.6
Fire Flow Demand	150	2,378
Total Water Demand	151.3	2,398
Actual Flow at 20 PSI Residual Pressure	210.6	3,338

As can be seen above the existing water supply will be adequate to provide the necessary domestic and fire flow to the proposed site under the Ontario Building Code applied sprinklered building calculations. Final calculations will be provided to confirm the above by a qualified sprinkler consultant at the detailed design stage.

3.3 Stormwater Management

Existing Condition

On the south side of the subject property, there is an existing 1.0 meter flat bottom ditch, with 3:1 sloping and a minimum depth of 0.8 meters, located on a service corridor that flows westerly until the southwest corner of the property. It then continues to flow northerly for approximately 83.5 meters where it then changes direction and flows to the west towards Fox Road.

On the east side of the subject property, there is an existing ditch which flows southerly down Henderson Street, and outlets into the existing 1.0 meter flat bottom ditch on the south of the property.

The existing site drains via sheet flow to the existing 1.0 meter flat bottom ditch on service corridor.

Pre - Development Flows:

The allowable flows were based on criteria obtained from the Town of Port Hope during a preconsultation meeting. The design criteria provided is to control flows from the site to 17.3 l/s/ha in accordance with the *Stormwater Management and Erosion and Silt Control Report* by Aecom, (2011).

Design storm data for the Town of Port Hope:

5 Year storm event

 $I_5 = 2464/(Tc+16)$ where: I = intensity (mm/hr.)

Tc = time of concentration (min)

100 Year storm event

 $I_{100} = 5588/(Tc+28)$ where: I = intensity (mm/hr.)

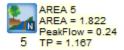

Tc = time of concentration (min)

Table 7 – Allowable Discharge					
Total Area (ha) Q (l/s) – 17.3 l/s/ha					
1.822	31.5				

A Visual OTTHYMO is used to for the modelling to determine the peak flows for 5- and 100-year storm events for the existing condition using NASHYD method, see the following Table 8 for the description and characteristics of the pre-development system. The pre-development discharge for 100-year storm event is 240 l/s however, the post-development discharge should be less or equal to the allowable discharge.

Table 8 – Catch	Table 8 – Catchment Characteristics for the Pre-Developed Site							
Area No.	Area (ha)	Hydrograph Method	% impervious	imperviousness directly connected %	Loss Method for Pervious Area	CN for Pervious Area	Initial Abstraction for Pervious Area	Time to peak (T _P)
Site	1.822	NASHYD	-	-	SCS	80	5	0.20

A schematic of Visual OTTHYMO Model (100 Year Storm)-pre-development condition is shown below:

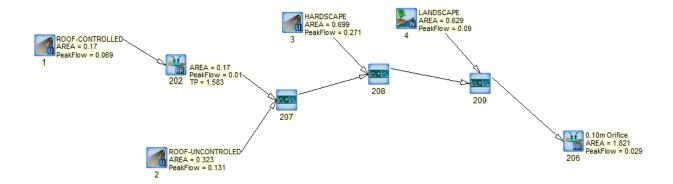
The following **Table 9** shows a summary of the peak flows from the site.

Table 9 – Summary of Flows from Site-Pre-Development Condition					
Storm Event	Allowable Flow (L/s)	Pre-Development Flow (L/s)			
5 Year Storm	31.5	75			
100 Year Storm	31.5	240			

Refer to the Visual OTTHYMO detailed output in **Appendix D** for further details.

Post - Development Flows:

For the purposes of post-development analysis, the proposed site has been divided into post-development tributary areas as shown in **Appendix D**


In order to control the post development flows to allowable flows, on-site storage by two underground storage chambers and a dry pond as well as a roof control for the 4-storey apartment building will be required. Visual OTTHYMO will be used to model and determine the detention volume required. A 0.10m (100mm) Orifice plate will be used to detain flows on site before discharging to the existing ditch on the west side of the property. This device has been chosen due to the restrictive nature of the development to maximize discharge rates vs. Head acting on the device. An orifice tube would be too restrictive or allow too much flow to pass through. To address concerns with regards to removal of the orifice plate notes have been added to the drawings and details to ensure measures are provided to prevent tapering of this device.

The stage/storage/discharge properties used to model the flow controls for this site are shown in **Appendix D.** A summary of the site storage is provided in Table 10 below.

	Table 10 – Storage Su	mmary
Storm	Required Storage (m ³)	Provided Storage (m³)
5 Year	379	1039
100 Year	981	1039

Visual OTTHYMO 2.3.2. will be used to model and determine the peak flows for 5- year and 100-year storm events. For drainage areas with significant imperviousness the calculation of effective rainfall in Visual OTTHYMO is accomplished using the "STANDHYD" method. This method is used in urban watersheds to simulate runoff by combining two parallel standard unit hydrographs resulting from the effective rainfall intensity over the pervious and impervious surfaces. For pervious surfaces, losses are calculated using the SCS modified CN method.

See schematic of Visual OTTHYMO Model (100 -Year Storm) below:

Table 11 shows the description and characteristics of the post-development system. Refer to the Visual OTTHYMO detailed output file in **Appendix D** for further details.

Table 11 – Catc	hment	Characteristi	cs fo	r the Post-	Developed	Site		
Area No.	Area (ha)	Hydrograph Method	% impervious	imperviousness directly connected %	Loss Method for Pervious Area	CN for Pervious Area	Initial Abstraction for Pervious Area	Time to peak (T _{p.})
Area 1- Rooftop Uncontrolled	0.17	STANDHYD	99	99	SCS	80	1	-
Area 2- Rooftop Uncontrolled	0.323	STANDHYD	99	99	SCS	80	1	-
Area 3- Hardscape	0.699	STANDHYD	90	90	SCS	80	1	-
Area 4 - Landscape	0.629	NASHYD	-	-	SCS	80	5	0.167

The following **Table 12** shows a summary of the total peak flows from the site.

Table 12 – Summary	of Flows from Site	
Storm Event	Allowable Flow (L/s)	Proposed Flow (L/s)
5 Year 1Storm	31.5	21
100 Year Storm	31.5	28

As can be seen the post development flow is less than the allowable flow for both the 2- and 100-year storm events, thus meeting the Town of Port Hope storm water quantity controls for the proposed development.

Water Quality:

For the purposes of zoning and based on the type of development water quality can be achieved through the use of an adequately sized Oil/Grit Separator or Oil/Grit Filtration Separator in combination with LID's and alternative means to achieve water quality.

Water Quality for the proposed development will be determined at the detailed design stage based on the above noted design principals to meet the required water quality storm events.

Based on the current site plan it is expected that a HydroDome HD 6 will meet the required 80% TSS removal.

For further detailed calculations refer to Appendix D.

4.0 EROSION CONTROL

Erosion and sediment controls for the site will be implemented according to The Ministry of Natural Resources Guidelines on Erosion and Sediment Control for Urban Construction Sites. A detailed erosion control plan is included in the set of drawings.

5.0 CONCLUSIONS

From our investigation, the site is serviceable utilizing existing sanitary, storm and watermain infrastructure adjacent to the site. The post development 2- & 100-year storm design have been maintained at the allocated flow rate for the site.

The following **Table 13** summarizes the components of the proposed development.

Table 13 – Summary Information	
Total Sanitary Flow (L/sec)	5.42
Total Water Demand : (L/sec)	151.3
Actual Flow at 20 PSI (L/sec)	210.6
Allowable release rate from site (L/sec) (100- year storm)	31.5
Actual release rate from site (L/sec) (100 year storm)	28
Total Storm Water Storage Required (m3)	967
Total Storm Water Storage Provided (m3)	1039
Quantity Control	100mm Dia. Orifice Plate
Water Quality	Oil Grit Separator
Trace. Guanty	HydroDome HD6

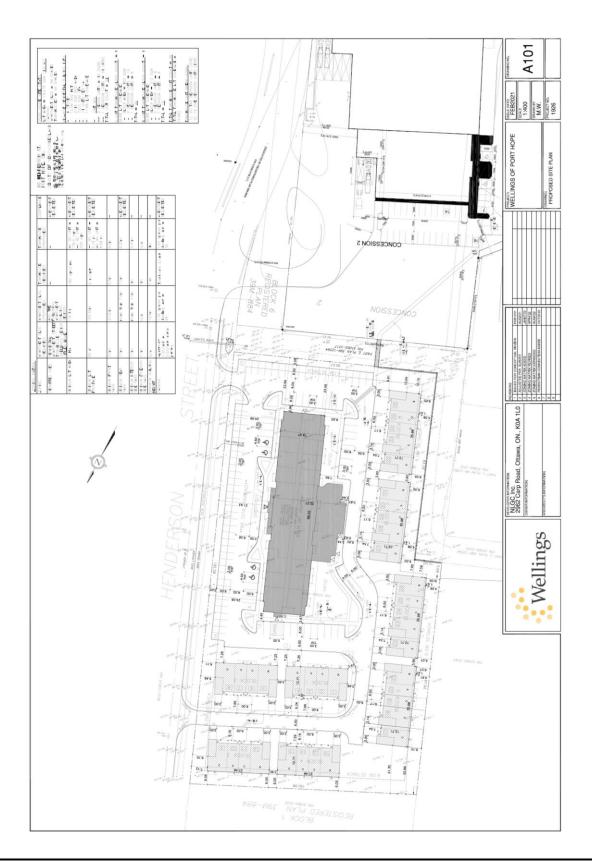
Respectfully Submitted;

The Odan/Detech Group Inc.

April 19 2023 Paul Hecimovic, P.Eng.

April 19 2023 Mark Harris, Dipl. Tech.

APPENDIX A


- A1. Aerial Photo of Existing Site
- A2. Site Plan
- A3. Site Statistics
- A4. Topography of Existing Site

A.1 Aerial Photo of Existing Site

Appendix A – Figure 1: Aerial Photo of Existing Site is an excerpt from Google Maps with the approximate property line shown (**red** line). For detailed information regarding the existing property line and topography site conditions, refer to the latest survey and drawings prepared by Sylvester & Brown Land Surveying Ltd., see also **Appendix A – Figure 2**.

A.2 Site Plan

A.3 Site Statistics

```
PORT HOPE SITE STATS:
LOT AREA = 18,218 SQM (4.5 AC)
PARKING:
APARTMENT BLDG = 98 SPACES
TOWNHOUSES = 56 SPACES
MID-RISE RESIDENTIAL BUILDING INFO:
    4 STOREY
    13.5M BDG HGT.
    2148 SQM BDG AREA
   7223 SQM GFA
   74 UNITS PER HA.

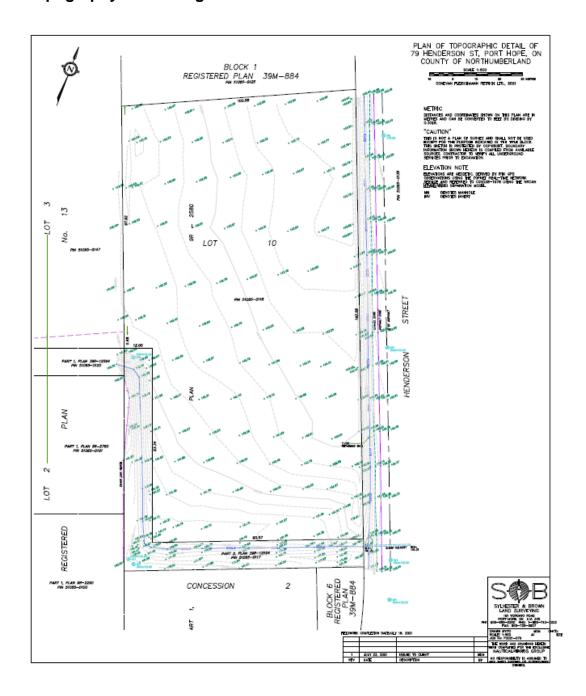
    11.8% LOT COVERAGE

   UNIT MIX:
-- 2 BEDRM UNITS = 40 (52%)
-- 1 BEDROOM UNITS = 34 (48%)
TOTAL UNIT COUNT = 74
<u> 5 UNIT TOWNHOUSE BLOCK COUNT:</u> = 4
(8.8% LOT COVERAGE)
 - BLOCK AREA = 402 SQM

    2 BEDROOM UNITS = 12

– 1 BEDROOM UNITS = 8
TOTAL = 20
4 UNIT TOWNHOUSE BLOCK COUNT: = 4
(6.8% LOT COVERAGE)

    BLOCK AREA = 312 SQM


    2 BEDROOM UNITS = 8

 – 1 BEDROOM UNITS = 8
TOTAL = 16
TOTAL TOWNHOUSE UNIT COUNT = 36
(TOTAL TOWNHOUSE LOT COVERAGE =
15.6%)
TOWNHOUSE UNIT BREAK-DOWN:

    20 TWO BEDROOM UNITS (55%)

    16 ONE BEDROOM UNITS (45%)
```

A.4 Topography of Existing Site

Appendix A – Figure 2: Topography of Existing Site is topography from Drawing 20-2716, dated July 23, 2021 and prepared by Sylvester & Brown Land Surveying Ltd. For detailed information regarding the existing topography site conditions, refer to the latest survey and drawings prepared by Sylvester & Brown Land Surveying Ltd.

APPENDIX B

SANITARY FLOW CALCULATIONS

SANITARY FLOW CALCU	LATIONS			SCENERI	O:	Proposed/Exi	sting Devel	opment
This program calculates the sanit	ary discharge	from variou	us land use					
As per the City of Toronto Guideli					FILL IN COLO	URED CELLS	S AS REQU	JIRED
TOTAL SITE AREA (ha) =	1.822							
LAND USE	NUMBER OF UNITS	SITE AREA, (ha)	GROSS FLOOR AREA, m2	TOTAL POPULATION	TOTAL DAILY FLOW (LITERS)	AVERAGE DAILY FLOW I/sec	PEAKING FACTOR, M	TOTAL FLOW FROM LAND USE, I/sec
RESIDENTIAL EX 1 Bedroom, using 1.4 persons/unit	0			0	0	0.00		
RESIDENTIAL PROP 1 Bedroom, using 1.4 persons/unit	34			48	21420	0.25		
RESIDENTIAL EX 2 Bedroom, using 2.1 persons/unit	0			0	0	0.00		
RESIDENTIAL PROP 2 Bedroom, using 2.1 persons/unit	40			84	37800	0.44		
RESIDENTIAL EX 3 Bedroom using 3.1 persons/unit	0			0	0	0.00		
RESIDENTIAL PROP 3 Bedroom using 3.1 persons/unit	0			0	0	0.00		
RESIDENTIAL EX Townhouse using 2.7persons/unit	0			0	0	0.00		
RESIDENTIAL PROP TH using 2.7persons/unit	36			97	43740	0.51		
Total Residential	110			229	102960	1.19	4.13	4.9
COMMERCIAL, Using 100 persons/ha	0			0				
COMMERCIAL, Using 1.1 persons/100 m2	0			0				
OFFICES, Using, 3.3 persons/100m2	0			0				
Total ICI	0	0.00			0	0.00		0.0
				P=	229			
TOTAL				V1=	102960	Q1= Q2=		
Q = (MqP/86400) + A * I (L/sec)						Qinfil Qtot	0.47	
Q1= total flow from Residential La Q2= total flow from Commercial L Qinfil = total flow from infiltration (Qtot = total flow (Land use + infilt	and Use (L/s L/sec)		where :	q = 250 L	/cap/day (Ex	Residential) Commerical/C		
V1= Total Volume from Land Use	in liters			i = 0.26 L	site area /sec/ha (infiltra	ation rate) 1 + [14 / (4 + (

APPENDIX C

FUS CALCULATION SHEET

OBC CALCULATION by JSCI

WATER CURRING OR RUBUS FIRE RROTE	CTION FI	DELINDED	A/DITEDS	CLIDVEY						
WATER SUPPLY FOR PUBLIC FIRE PROTE GUIDE FOR DETERMINATION OF REQUI			WRITERS	SURVEY						
F = 220 x C x V A										
Where:										
F = required fire flow in liters per minute C= Coefficient related to the type of cons										
A = the total floor area in square meters	re accion									
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	erson Stree	et, Port H	ope		PROJECT:	4 Storey Mi	d rise building		
OBC OCCUPANCY:		Reside	ential			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	2121					1			Contents	Charge
# OF STOREYS	4						DATE OF THE PARTY		Non-Combustible	-25%
# OF STORETS									Limited	
									Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Wood I	rame						Free Burning	15%
									Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	Yes	30%	E00/						Coefficient related to	type of construction
Standard Water Supply	Yes	10%	50%						1.5	Wood Frame
Fully Supervised System	Yes	10%							1	Ordinary
		50%				1	1 17		0.8	Non combustible Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ible		CHARGE:	-15%			
				,					Separation	Charge
EXPOSURE 1 (south)	Dista	nce to Exp		lding (m) n - Height		>45	0		0-3 m 3.1 -10 m	25%
EXPOSURE 2 (east)	Dista	nce to Exp				. 45			10.1 - 20 m	15%
				n - Height		>45	0		20.1 - 30 m	10%
EXPOSURE 3 (west)	Dista	nce to Exp				14.3	15		30.1 - 45	5%
EXPOSURE 4 (north)	Dista	nce to Exp		n - Height					> 45 m Firewall	10%
				n - Height		21.7	10			
						Total:	25	no more than 75%		
								/5%		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical	openings and	d exterior w	ertical comp	nunicat	ions protected with a r	ninimum one	(1) hr rating?	NO	
	, are vertical	openings un	L CACCITOI V	Created Comm		ions protected with a r		(1)	-	
CALCULATIONS	C =	1.5		Wood Fi	rame				CTOREV ASSES	
	A =	7153	m2	Total					STOREY AREAS m2	
	F =	27909	L/min						2121	
Round to Nearest 1000 L/min	F =	28000	L/min	must be	> 200	0 L/min			1677 1677	
CORRECTION FACTORS:									1677	
OCCUPANCY		-4200	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY		23800	L/min							
REDUCTION FOR SPRINKLER EXPOSURE CHARGE		-11900 5950	L/min							
EAFOJORE CHARGE		3330	L/min							
REQUIRED FIRE FLOW	F=	17850	L/min							
Round to Nearest 1000 L/min	F=	18000	L/min	4755	usgm					
	F=	300	L/sec							

WATER SUPPLY FOR PUBLIC FIRE PROTEC	CTION , FIF	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR										
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	ope		PROJECT:	4 Unit Blook	(
OBC OCCUPANCY:		Reside	ntial			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	312								Contents	Charge
	1					- 1900			Non-Combustible	-25%
# OF STOREYS		<u> </u> 							Limited	
									Combustible	-15%
						Se Cum			Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
							1 1 1 1 1 1 1 1 1 1		Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%	0%						Coefficient related to	type of construction
Standard Water Supply	No	0%	0%			The state of the s	II mmun t		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%				'	1 11	-	0.8	Non combustible
CONTENTS FACTOR:		Limited	Combust	iblo		CHARGE:	-15%		0.6	Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ibie		CHARGE:	-15%		Separation	Charge
EXPOSURE 1 (south)	Distar	ice to Expo	sure Bui	lding (m)					0-3 m	25%
EXT COOKE 1 (South)	Distai	ice to Expe		ı - Height		22.6	10		3.1 -10 m	20%
EXPOSURE 2 (east)	Distar	ice to Expo					_		10.1 - 20 m	15%
, ,				ı - Height		>45	0		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distar	ice to Expo				2.6	20		30.1 - 45	5%
				ı - Height		3.6	20		> 45 m	0%
EXPOSURE 4 (north)	Distar	ce to Expo	sure Bui	lding (m)		>.AF	0		Firewall	10%
			Length	ı - Height		>45	U			
						Total:	30	no more than 75%		
								. 3/0		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical	openings and	d exterior v	ertical comm	nunicat	ions protected with a r	ninimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fr	ame					
	A =	312	m2	Total					STOREY AREAS m2	
	F =	5829	L/min						242	
Round to Nearest 1000 L/min	F=	6000	L/min	must be	> 200	00 L/min			312 0	
CORRECTION FACTORS									0	
CORRECTION FACTORS: OCCUPANCY		-900	L/min						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		5100	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		1530	L/min							
DECLUDED FIRE FLOW	_	6620								
REQUIRED FIRE FLOW	F=	6630	L/min	1040						
Round to Nearest 1000 L/min	F=	7000	L/min	1849	usgm					
	F =	117	L/sec							

WATER CLIRRLY FOR DURING FIRE DROTE	CTION FU	DE LINDED	A/DITEDS	CLIDVEV						
WATER SUPPLY FOR PUBLIC FIRE PROTE GUIDE FOR DETERMINATION OF REQUII			WRITERS	SURVEY						
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons			-							
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t. Port H	ope		PROJECT:	4 Unit Blool	<		
		Reside				DDOIECT N	21241 (PH)			
OBC OCCUPANCY:	312	Reside	iiuai			PROJECT No:			Contents	Charge
BUILDING FOOT PRINT (m2):						(1000)	MANAGE .			
# OF STOREYS	1								Non-Combustible	-25%
									Limited Combustible	-15%
						Guin.			Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
CONSTRUCTION CLASS.									Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%							Coefficient related to	type of constructio
Standard Water Supply	No	0%	0%				124411111111111111111111111111111111111		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%				'		_	0.8	Non combustible
CONTENTS FACTOR:		Limited	Combust	ible		CHARGE:	-15%		0.6	Fire Resistive
						0.17.11.02.			Separation	Charge
EXPOSURE 1 (south)	Dista	nce to Expo	sure Bui	ilding (m)		22.6	10		0-3 m	25%
				h - Height		22.0	10		3.1 -10 m	20%
EXPOSURE 2 (east)	Dista	nce to Expo				3.6	20		10.1 - 20 m	15%
EVECULEE 3 (west)	Dista			h - Height					20.1 - 30 m	10%
EXPOSURE 3 (west)	Distai	nce to Expo		h - Height		20.9	10		30.1 - 45 > 45 m	5% 0%
EXPOSURE 4 (north)	Dista	nce to Expo					_		Firewall	10%
,				h - Height		>45	0			
						Total:	40	no more than 75%		
ARE BUILDINGS CONTIGUOUS:	NO									
									NO	
FIRE RESISTANT BUILDING	Are vertical	openings and	exterior v	ertical comn	nunicat	ions protected with a r	nınimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fi	rame					
	A =	312	m2	Total					STOREY AREAS m2	
	F =	5829	L/min						312	
Round to Nearest 1000 L/min	F =	6000	L/min	must be	> 200	0 L/min			0	
CORRECTION FACTORS:									0	
OCCUPANCY		-900	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY		5100	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2040	L/min							
REQUIRED FIRE FLOW	F=	7140	L/min							
Round to Nearest 1000 L/min	F=	7000	L/min	1849	usgm					
	F =	117	L/sec							

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FIF	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR										
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	ope		PROJECT:	4 Unit Blool	C		
OBC OCCUPANCY:		Reside	ntial			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	312	Reside	Traid:			I KOJECI NO.			Contents	Charge
	1					- 1919	PROPERTY		Non-Combustible	-25%
# OF STOREYS	-								Limited	25/6
									Combustible	-15%
						Annua Annua			Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
							h 1		Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%							Coefficient related to	type of construction
Standard Water Supply	No	0%	0%				124411111111111111111111111111111111111		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%					1 1 /	-	0.8	Non combustible
							450/		0.6	Fire Resistive
CONTENTS FACTOR:		Limited	Lombust	ibie		CHARGE:	-15%		Separation	Charge
EXPOSURE 1 (south)	Distar	ice to Expo	sure Bui	lding (m)					0-3 m	25%
2.1. 000112 2 (000011)	2.500.	ice to Expe		ı - Height		21.8	10		3.1 -10 m	20%
EXPOSURE 2 (east)	Distar	ice to Expo					_		10.1 - 20 m	15%
, ,				n - Height		>45	0		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distar	ice to Expo				2.6	20		30.1 - 45	5%
			Length	ı - Height		3.6	20		> 45 m	0%
EXPOSURE 4 (north)	Distar	ice to Expo	sure Bui	lding (m)		22.6	10		Firewall	10%
			Length	ı - Height		22.0	10			
						Total:	40	no more than 75%		
								7370		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical	openings and	d exterior v	ertical comm	nunicat	ions protected with a r	minimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fr	ame					
CALCOLATIONS	A =	312	m2	Total	ante				STOREY AREAS m2	
Round to Nearest 1000 L/min	F = F =	5829 6000	L/min L/min	must be	> 200	IO I /min			312 0	
to recured 2000 L/ IIIII	. –	3000	2,111111	and the	. 200				0	
CORRECTION FACTORS:		205	. ,						0	
OCCUPANCY		-900	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY		5100	L/min							
REDUCTION FOR SPRINKLER		2040	L/min							
EXPOSURE CHARGE		2040	L/min							
REQUIRED FIRE FLOW	F=	7140	L/min							
	l	7000	L/min	1849	usgm					
Round to Nearest 1000 L/min	F=	, 000	_,							
Round to Nearest 1000 L/min	F=	117	L/sec							

WATER SUPPLY FOR PUBLIC FIRE PROTEC	CTION , FIF	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR	RED FIRE FI	OWS								
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	оре		PROJECT:	4 Unit Blool	:		
OBC OCCUPANCY:		Reside	ntial			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	312								Contents	Charge
	1					- 1935			Non-Combustible	-25%
# OF STOREYS	_								Limited	
									Combustible	-15%
						anni			Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
						[Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%							Coefficient related to	type of construction
Standard Water Supply	No	0%	0%			-	II HIIIIIIIII		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%				ı ı	1 1 /	2	0.8	Non combustible
CONTENTS FACTOR:		Limited	^b	de la		CUARCE	150/		0.6	Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ible		CHARGE:	-15%		Separation	Charge
EXPOSURE 1 (south)	Distar	ice to Expo	sure Bui	ilding (m)					0-3 m	25%
				n - Height		23.0	10		3.1 -10 m	20%
EXPOSURE 2 (east)	Distar	ice to Expo				3.6	20		10.1 - 20 m	15%
			Length	n - Height		3.0	20		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distar	ice to Expo	sure Bui	ilding (m)		16.8	15		30.1 - 45	5%
				n - Height		10.0	13		> 45 m	0%
EXPOSURE 4 (north)	Distar	ice to Expo				22.6	10		Firewall	10%
			Length	n - Height						
						Total:	55	no more than 75%		
ARE BUILDINGS CONTIGUOUS:	NO									
ARE BOILDINGS CONTIGUOUS.	NO									
FIRE RESISTANT BUILDING	Are vertical	openings and	l exterior v	ertical comm	nunicat	ions protected with a r	minimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fr	ame					
	A =	312	m2	Total					STOREY AREAS m2	
	F =	5829	L/min						243	
Round to Nearest 1000 L/min	F =	6000	L/min	must be	> 200	00 L/min			312	
									0	
CORRECTION FACTORS: OCCUPANCY		-900	L/min						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		5100	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2805	L/min							
DEOLUBED EIDE ELOW	- _	7005	I /min							
REQUIRED FIRE FLOW	F=	7905	L/min	2112	11000					
Round to Nearest 1000 L/min	F=	8000	L/min	2113	usgm					
	F=	133	L/sec							

WATER SUPPLY FOR PUBLIC FIRE PROTE GUIDE FOR DETERMINATION OF REQUI			WRITERS	SURVEY						
GOIDETON DETERMINATION OF REGOT	KLDTIKLTI	-000								
F 220 C /A										
F = 220 x C x √ A										
Where: F = required fire flow in liters per minute										
C= Coefficient related to the type of cons										
A = the total floor area in square meters	, ci accioni									
(excluding basements) in the building										
considered										
	79 Hende	rcan Ctraa	t Dort He			PROJECT:	5 Unit Blook			
LOCATION:	79 Helidei			эре			21241 (PH)	`		
OBC OCCUPANCY:	402	Reside	ntial			PROJECT No:	21241 (PH)		Contents	Charas
BUILDING FOOT PRINT (m2):	402						n managarine		Contents	Charge
# OF STOREYS	1								Non-Combustible	-25%
									Limited Combustible	-15%
									Combustible	0%
CONCEDUCATION OF THE		Wood F	rame						Free Burning	15%
CONSTRUCTION CLASS:		vv ood F	ranne				東南北		Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total						Kapiu Builing	23/6
NFPA 13 sprinkler standard	No	0%							Coefficient related to	type of construction
Standard Water Supply	No	0%	0%			-	II IIIIIIIIII		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%					1 17	-	0.8	Non combustible
									0.6	Fire Resistive
CONTENTS FACTOR:		Limited	Combusti	ble		CHARGE:	-15%		Separation	Charge
EXPOSURE 1 (south)	Distan	ice to Expo	sure Buil	lding (m)					0-3 m	25%
,		•		- Height		3.6	20		3.1 -10 m	20%
EXPOSURE 2 (east)	Distan	ice to Expo	osure Buil	lding (m)		16.8	15		10.1 - 20 m	15%
				- Height		10.8	13		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distan	ice to Expo				>45	0		30.1 - 45	5%
EVENOCUES 4 (5 : .			- Height					> 45 m	0%
EXPOSURE 4 (north)	Distan	ice to Expo		aing (m) - Height		>45	0		Firewall	10%
			Length	ricigiit		Total:	35	no more than		
								7376		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical o	openings and	d exterior ve	ertical comm	nunicat	ions protected with a	minimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fr	ame					
	A =	402	m2	Total					STOREY AREAS m2	
	F =	6616	L/min						402	
Round to Nearest 1000 L/min	F =	7000	L/min	must be	> 200	00 L/min			0	
CORRECTION FACTORS:									0	
OCCUPANCY	,	-1050	L/min						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		5950	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2082.5	L/min							
REQUIRED FIRE FLOW	F =	8033	L/min							
Round to Nearest 1000 L/min	F =	8000	L/min	2113	usgm					
<u>, </u>	F =	133	L/sec		J					
	-		1							

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FIF	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR										
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	ope		PROJECT:	5 Unit Bloo	(
OBC OCCUPANCY:		Reside	ntial			PROJECT No:	21241 (PH)			
BUILDING FOOT PRINT (m2):	402	Reside	iitiai			PROJECT NO.	· · · ·		Contents	Charge
	1					- 1000000	N. DESTRUCTION		Non-Combustible	-25%
# OF STOREYS	1									-23/0
									Limited Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
									Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%							Coefficient related to	type of construction
Standard Water Supply	No	0%	0%			- 1	114111111111		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
<u> </u>		0%						4	0.8	Non combustible
									0.6	Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ible		CHARGE:	-15%			
EXPOSURE 1 (south)	Dictor	ice to Expo	Scure Pui	Iding (m)					Separation 0-3 m	Charge 25%
EXPOSORE 1 (SOUTH)	Distai	ice to Expt		n - Height		7.3	20		3.1 -10 m	20%
EXPOSURE 2 (east)	Distar	ice to Expo							10.1 - 20 m	15%
EXT OSURE 2 (cast)	Distai	ice to Expe		ı - Height		29.6	10		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distar	ice to Expo							30.1 - 45	5%
za docuz d (west)	2.500.	ice to Empt		ı - Height		>45	0		> 45 m	0%
EXPOSURE 4 (north)	Distar	ice to Expo							Firewall	10%
2.1. 000112 . (1.0.1.1.)	2.500.	ice to Empt		ı - Height		3.6	20		· · · · · · · · · · · · · · · · · · ·	
			- 0-			Total:	50	no more than		
						Total.	30	75%		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Arousette	nonir	l ovto-i	ortical	i	ions protost- Julia	minimu	(1) he rot: = -2	NO	
FINE NESISTANT BUILDING	Are vertical	penings and	a exterior v	ertical commi	umcat	ions protected with a r	iiinimum one	(1) III rating?	IVO	
CALCULATIONS	C =	1.5		Wood Fra	ame					
	A =	402	m2	Total					STOREY AREAS m2	
	F =	6616	L/min						402	
Round to Nearest 1000 L/min	F =	7000	L/min	must be >	> 200	00 L/min			0	
CORRECTION FACTORS:									0	
OCCUPANCY		-1050	L/min						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		5950	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2975	L/min							
DEUTIDED EIDE ELOW	E -	8925	L/min							
REQUIRED FIRE FLOW Round to Nearest 1000 L/min	F =	9000	L/min	2378 u	ısgm					
Nound to Nedrest 1000 L/Min	F=	150	L/sec	2376	ısgiii					
		130	LISEL			<u> </u>				

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FIR	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR										
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	оре		PROJECT:	5 Unit Blool	(
OBC OCCUPANCY:		Residential				PROJECT No: 21241 (PH)				
BUILDING FOOT PRINT (m2):	402	reside							Contents	Charge
	1					1919101			Non-Combustible	-25%
# OF STOREYS	-								Limited	2570
									Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:		Wood F	rame						Free Burning	15%
						· -	1 I		Rapid Buring	25%
AUTOMATED SPRINKLER PROTECTION		Credit	Total							
NFPA 13 sprinkler standard	No	0%							Coefficient related to	type of construction
Standard Water Supply	No	0%	0%				u numul r		1.5	Wood Frame
Fully Supervised System	No	0%							1	Ordinary
		0%				1		-	0.8	Non combustible
CONTENTS FACTOR:		Limited	Combust	iblo		CHARGE:	-15%		0.6	Fire Resistive
CONTENTS FACTOR.		Limiteu	Combust	ible		CHARGE:	-13/0		Separation	Charge
EXPOSURE 1 (south)	Distance to Exposure Building (m)					0.6			0-3 m	25%
,	Length - Height					3.6	20		3.1 -10 m	20%
EXPOSURE 2 (east)	Distance to Exposure Building (m)					14.2	15		10.1 - 20 m	15%
	Length - Height					14.2	15		20.1 - 30 m	10%
EXPOSURE 3 (west)	Distance to Exposure Building (m)					> 45	0		30.1 - 45	5%
	Length - Height					1	,		> 45 m	0%
EXPOSURE 4 (north)	Distance to Exposure Building (m)					7.3	20		Firewall	10%
	Length - Height							no more than		
						Total:	55	75%		
ARE BUILDINGS CONTIGUOUS:	NO									
ARE DOLLDINGS CONTINUES.	NO.									
FIRE RESISTANT BUILDING	Are vertical o	openings and	d exterior v	ertical comm	unicat	ions protected with a r	ninimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fra	ame					
	A =	402	m2	Total					STOREY AREAS m2	
	F =	6616	L/min						402	
Round to Nearest 1000 L/min	F =	7000	L/min	must be	> 200	00 L/min			0	
CORRECTION FACTORS:									0	
OCCUPANCY		-1050	L/min						0	
FIRE FLOW ADJUSTED FOR OCCUPANCY		5950	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		3272.5	L/min							
REQUIRED FIRE FLOW	F =	9223	L/min							
Round to Nearest 1000 L/min	F=	9000	L/min	2378 u	ısgm					
Nouna to Nedrest 1000 L/Min	F=	150	L/sec	2370	asgiii					
	<u> </u>	130	LJJCL							

WATER SUPPLY FOR PUBLIC FIRE PROTE	CTION , FIF	RE UNDER	WRITERS	SURVEY						
GUIDE FOR DETERMINATION OF REQUIR	RED FIRE FI	OWS								
F = 220 x C x √ A										
Where:										
F = required fire flow in liters per minute										
C= Coefficient related to the type of cons	truction									
A = the total floor area in square meters										
(excluding basements) in the building										
considered										
LOCATION:	79 Hende	rson Stree	t, Port H	оре		PROJECT:	5 Unit Bloo	k		
OBC OCCUPANCY:		Residential			PROJECT No: 21241 (PH)					
BUILDING FOOT PRINT (m2):	402								Contents	Charge
# OF STOREYS	1								Non-Combustible	-25%
J. J.OILIJ									Limited	150/
							a minimized		Combustible	-15%
									Combustible	0%
CONSTRUCTION CLASS:	Wood Frame								Free Burning	15%
AUTOMATED SPRINKLER PROTECTION		Credit	Total			· _	I		Rapid Buring	25%
NFPA 13 sprinkler standard	No	0%	TOTAL						Coefficient related to	type of construction
			0%				- d			
Standard Water Supply	No	0% 0%					11 41111111 17		1.5	Wood Frame
Fully Supervised System	No	0%						-	0.8	Ordinary Non combustible
		0%							0.8	Fire Resistive
CONTENTS FACTOR:		Limited	Combust	ible		CHARGE:	-15%			
									Separation	Charge
EXPOSURE 1 (south)	Distance to Exposure Building (m)					> 45	0		0-3 m	25%
	Length - Height					743	Ů		3.1 -10 m	20%
EXPOSURE 2 (east)	Distance to Exposure Building (m)					27.7	10		10.1 - 20 m	15%
EVPOCUPE 2 /	Length - Height Distance to Exposure Building (m)								20.1 - 30 m	10%
EXPOSURE 3 (west)						26.8	10		30.1 - 45	5% 0%
EXPOSURE 4 (north)	Length - Height Distance to Exposure Building (m)								> 45 m Firewall	10%
EXPOSORE 4 (HOLLI)	Length - Height					3.6	20		riiewaii	1070
			Length Heig			Total:	40	no more than		
						Total.	40	75%		
ARE BUILDINGS CONTIGUOUS:	NO									
FIRE RESISTANT BUILDING	Are vertical	openings and	d exterior v	ertical comn	nunicat	ions protected with a r	minimum one	(1) hr rating?	NO	
CALCULATIONS	C =	1.5		Wood Fr	rame					
	A =	402	m2	Total					STOREY AREAS m2	
	F =	6616	L/min						402	
Round to Nearest 1000 L/min	F =	7000	L/min	must be	> 200	0 L/min			0	
CORRECTION FACTORS:									0	
OCCUPANCY		-1050	L/min							
FIRE FLOW ADJUSTED FOR OCCUPANCY		5950	L/min							
REDUCTION FOR SPRINKLER		0	L/min							
EXPOSURE CHARGE		2380	L/min							
REQUIRED FIRE FLOW	F =	8330	L/min							
	F=	8000	L/min	2113	usgm					
Round to Nearest 1000 L/min	–									
Round to Nearest 1000 L/min	F=	133	L/sec							

Jan. 17, 2022

Re: 500 Holland Street W., Bradford ON.

Fire Protection Water Supply Requirement for Part 3 of O.B.C.

The proposed commercial building at 500 Holland Street W., Bradford ON. is a Seniors apartment building. The entire building is of combustible construction, sprinklered.

The site and building is serviced by municipal water supply (Water flow and pressure test attached)

Existing Site (attached)

The Subject Site is located on the (short description of site and surrounding areas)

To the North: Vacant Land

To the East: Existing Grocery Store To the West: Langford Blvd To the South: Miller Park Ave

Calculation: Q=KVStot

K: building construction classification

V: building volume

Stot: building property line distances

Stot = 1+ Σ Stot

Building classifications by group:

Apartment Building: C (K=18)

Building Volume:

24,625 m³

Building multiple exposures:

18.1 m; Stot = 0

27.6 m; Stot =0

3.0 m1.5m, Stot=0.5

26.5 m, Stot = 0

Stot = 1+0+0+0.5+0

Jain Sustainability Consultants Inc. 7405 East Danbro Crescent, Mississauga, Ontario, L5N 6P8 Canada

thinking globally, delivering locally

(905) 285-9900 (905) 567-5246 (905) mail@jainconsultants.com www. jainconsultants.com (905) 285-9900 (905) 285-

Q=18 x 24,626 m3 x 1.5

Q=664,902 m3

According to Fire protection Water Supply guideline for Part 3 of OBC A3.2.5.7, Table 2:

Minimum water supply flow rate for Q≥270,000

Required water supply shall be 9000 L/min (150 L/sec)

Conclusion:

Municipal water supply graph shows sufficient flow and pressure used for sprinkler and inside and outside hose stream requirement as referenced by Article 3.2.5.13 of the Building Code and NFPA 13.

Yours very truly,

D. Jain, M.Eng., M.B.A., P.Eng., C.E.M., L.A.P.

Enclosures

- Site Plan
- 2. Water flow and pressure test

Fire Flow Testing Report

Residual Hydrant # NFPA Colour Code

HY BLUE

January 25, 2022

ADDRESS

79 Henderson Street

Port Hope, ON L1A 2G3

RESIDUAL HYDRANT INFO.

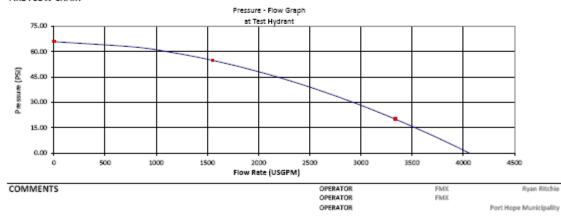
HYDRANT # N.F.P.A. COLOUR CODE

STATIC PRESSURE RESIDUAL PRESSURE

PRESSURE DROP 11.1 16.8

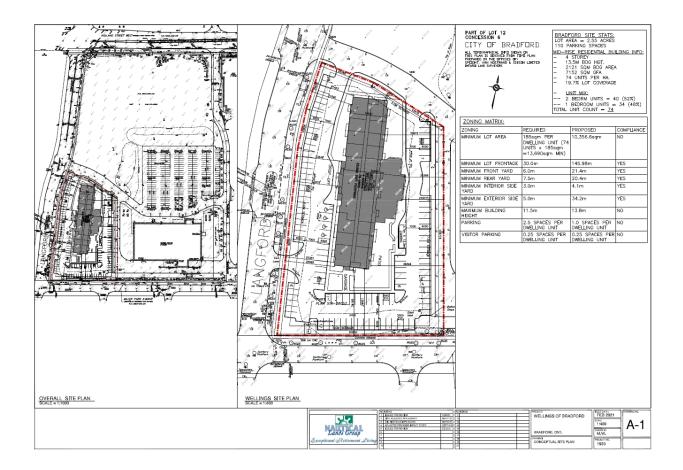
Flow on Water Main At Test Hydrant -3338 USGPM 20 psi

BLUE

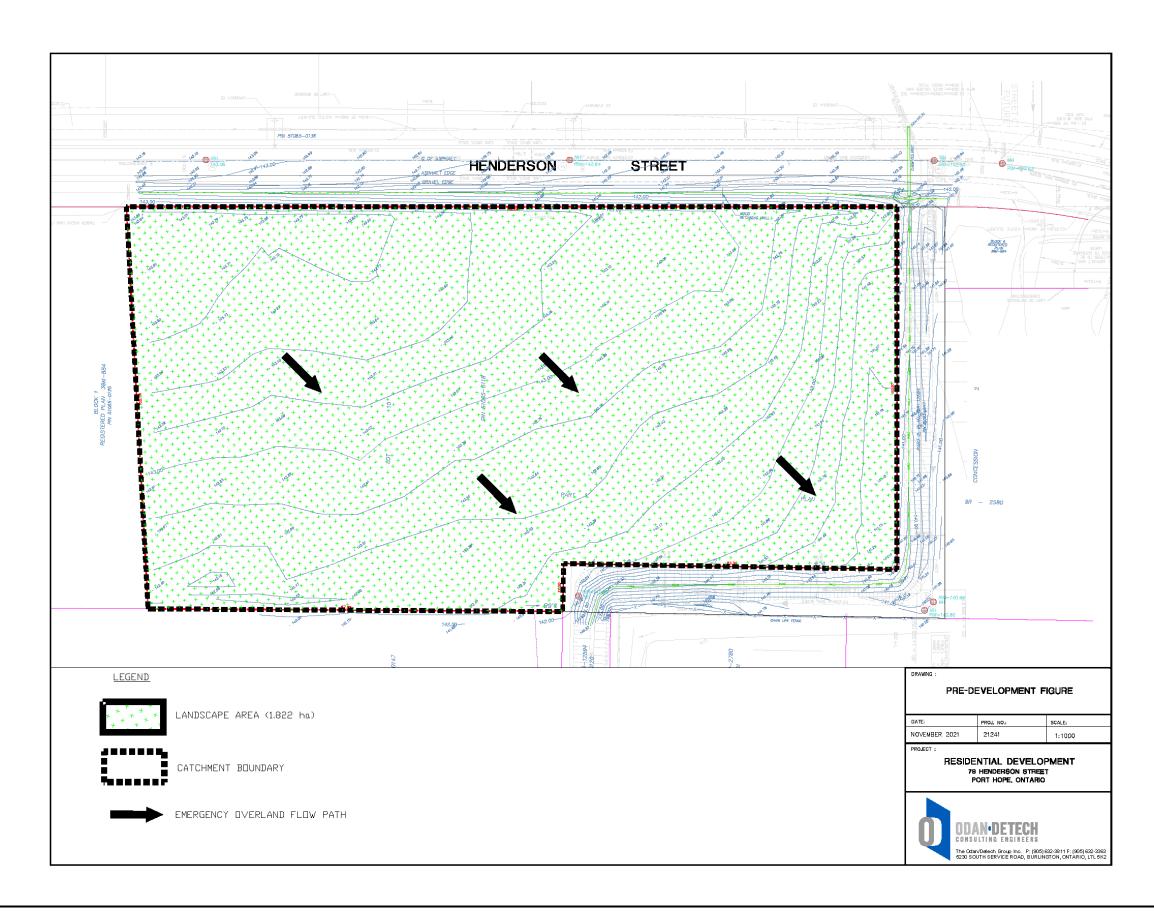

CONTACT INFO

Angela Mariani Nautical Lands Group T: (905) 683-1261 E: angela@nigc.comm

FLOW HYDRANT(S) INFO.


HYDRANT	HYD.	OUTLET	NOZZLE	DIFFUSER	DIFFUSER	PITOT	PITOT	FLOW
ASSET	*	DIAMETER	COEFFICIENT	TYPE	COEFFICIENT	READING	FLOW	METER
ID	PORTS	(INCHES)				(psi)	(USGPM)	(USGPM)
.mr	_	2.5	Round	LPD250	0.90	26.3	775	0
нү	2	2.5	Round	LPD250	0.90	26.3	775	0
	•	•	•		Total Flow (USGPM	1549	0	
					Total Flow (USGPM	15	49	

FIRE FLOW CHART


Copy of NauticalLandsGroup_FireFlowTesting_HendersonSt_PortHope

"If we don't measure it, how do you manage it?"

APPENDIX D

PRE-DEVELOPMENT STORM DRAINAGE AREA PLAN
POST-DEVELOPMENT STORM DRAINAGE AREA PLAN
STAGE/STORAGE/DISCHARGE CALCULATION SHEETS
CULTEC DESIGN SHEET
VISUAL OTTHYMO MODEL-Pre-Development
VISUAL OTTHYMO OUTPUT-Pre-Development
VISUAL OTTHYMO MODEL-Post-Development
VISUAL OTTHYMO OUTPUT-Post-Development
OGS SIZING

ORIFICE D	ISCHARG	E CALCUL	ATOR			
This program	calculates th	e discharge fro	om a circular orific	e when given elevation	ons	
and orifice dia	ameters by th	ne user.				
Discharge ba	sed on orifice	e equ.: Q = CA	x sqrt(2gh)			
Orifice Diam	eter =	0.100	m ←	Enter the orifice of	liameter in metres	
Area		0.00785	m2			
Discharge C	oeff. =	0.610	←	Enter discharge of	oeff. to use	
				Orifice Plate		
Elev.	Head (m)	Q (m3/s)	Cultec (m3)	Pond (m3)	Pipes & Structures	Total Storage(m3)
140.56	0	0.0000	0.0	0.0	0.0	0.0
141.14	0.58	0.0162	25.3	76.2	0.0	101.5
141.20	0.64	0.0170	41.6	76.2	0.0	117.8
141.40	0.84	0.0194	105.4	149.7	0.0	255.1
141.60	1.04	0.0216	165.4	228.5	0.0	393.9
141.80	1.24	0.0236	219.4	312.5	159.5	691.4
142.00	1.44	0.0255	260.1	402.2	159.5	821.8
142.20	1.64	0.0272	292.5	497.7	159.5	949.7
142.40	1.84	0.0288	280.7	599.2	159.5	1039.4

CULTEC Stormwater Design Calculator

Please Fill in the Shaded Cells

Project Information:

Project Name Address City State/Province ZIP/Postal Code

Country

Calculations Performed By:

Name Company Name Address City State/Province ZIP/Postal Code Country Phone Email

Date:	
April 19, 2023	
Project Number:	

Input Project Requirements

Select Model

Stone Porosity Number of HVLV Internal Manifolds Stone Depth ${\bf Above}$ Chamber Stone Depth Below Chamber Stone ${\bf Between}$ Chamber rows $\ \ \square \ \ Include \ Separator \ Row$

Workable Bed Depth Max. Bed Width Storage Volume Required

Stone Base Elevation

Recharger 30011D	
40%	
2 Internal Manifolds	
305	mm
229	mm
300	mm
-	

Metric

2.06 meters 40.00 meters 330.00 cu. meters meters

Additional Information:

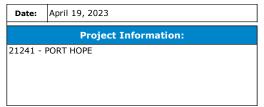
Other models are available if products above do not meet your requirements. Contact CULTEC for further design assistance. Call CULTEC at 203-775-4416 for pricing information.

Hyperlinks to product specific webpages:

Please visit our website for more information such as CAD details, spec information, brochures, installation instructions, and other design tools on certain models.

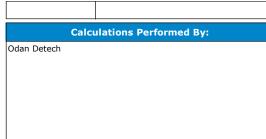
Contactor Field Drain C-4HD Contactor 100HD Recharger 150XLHD Recharger 180HD

Recharger 360HD Recharger 902HD For design assistance, drawings and pricing send these calculations to:


mailto:tech@cultec.com

Website: www.cultec.com Recharger 280HD HVLV SFCx2 Feed Connector Recharger 330XLHD HVLV FC-24 Feed Connector HVLV FC-48 Feed Connector

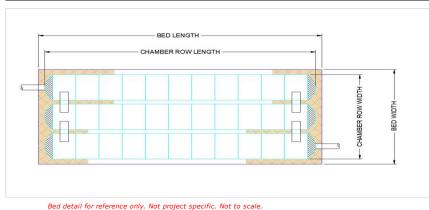
CULTEC No. 4800 Woven Geotextile CULTEC No. 410 Non-Woven Geotextile



CULTEC Stormwater Design Calculator

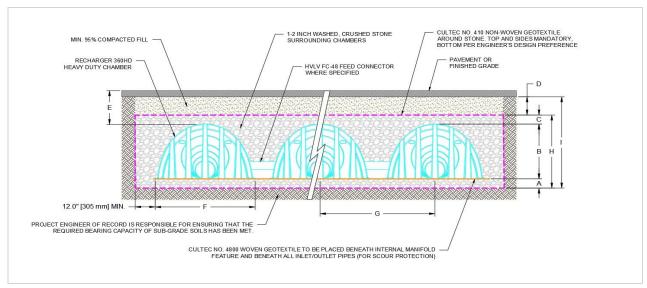
RECHARGER 360HD

Recharger 360HD Chamber Specifications								
Height	914	mm						
Width	1524	mm						
Length	1.27	meters						
Installed Length	1.12	meters						
Bare Chamber Volume	1.04	cu. meters						
Installed Chamber Volume	1.81	cu. meters						


Breakdown of Storage Provided by Recharger 360HD Stormwater System									
Within Chambers	182.23	cu. meters							
Within Feed Connectors	1.03	cu. meters							
Within Stone	158.05	cu. meters							
Total Storage Provided	341.3	cu. meters							
Total Storage Required	330.00	cu. meters							

Materials List

Recharger 360HD									
Total Number of Chambers Required	168	pieces							
Chamber Units	168	pieces							
End Caps	42	pieces							
HVLV FC-48 Feed Connectors	40	pieces							
CULTEC No. 410 Non-Woven Geotextile	1176	sq. meters							
CULTEC No. 4800 Woven Geotextile	77	meters							
Stone	395	cu. meters							


Based on 2 Internal Manifolds

Bed Detail

Bed Layout Information								
Number of Rows Wide	21	pieces						
Number of Chambers Long	8	pieces						
Chamber Row Width	38.10	meters						
Chamber Row Length	9.71	meters						
Bed Width	38.71	meters						
Bed Length	10.32	meters						
Bed Area Required	399.50	sq. meters						
Length of Separator Row	N/A	meters						

Bed detail for reference only. Not project specific. Not to scale.

Conceptual graphic only. Not job specific.

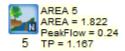
CLICK FOR STAGE-STORAGE REPORT

Cross Section Table Reference								
Α	Depth of Stone Base	229	mm					
В	Chamber Height	914	mm					
С	Depth of Stone Above Units	305	mm					
D	Depth of 95% Compacted Fill	305	mm					
E	Max. Depth Allowed Above the Chamber	3.66	meters					
F	Chamber Width	1524	mm					
G	Center to Center Spacing	1.83	meters					
н	Effective Depth	1.45	meters					
I	Bed Depth	1.75	meters					

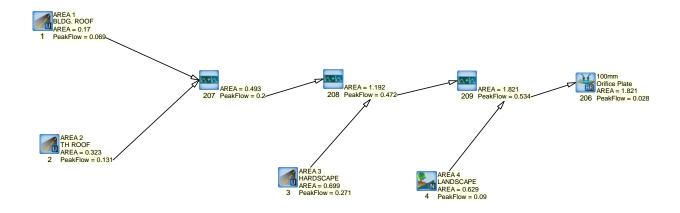
CULTEC Stage-Storage Calculations

Date: April 19, 2023

Project Information:


Project Number:0

SEE REPORT


Chamber Model -Recharger 360HD Number of Rows-21 units Total Number of Chambers -168 units HVLV FC-24 Feed Connectors-40 40 units Stone Void -Stone Base -229 Stone Above Units -305 mm Area -Base of Stone Elevation -399.50 140.84 m2

					lumes	Storage Vo	nental S	Incren	360HD	Recharger				
	tion	Eleva		Total Cumu Storage Vo		Cumulative Volui	olume	onnector Volume Stone Volum		mber Volume HVLV Feed Connector			Height of System	
	m	ft	m³	ft ³	m³	ft³	m³	ft³	m3	ft3	m³	ft³	mm	in
op of Stone Elevation	142.29	4.750	340.70	12031.66	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	1448	57.0
	142.26	4.670	336.64	11888.31	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	1422	6.0
	142.24	4.580	332.58	11744.97	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	1397	55.0
	142.21	4.500	328.52	11601.63	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	1372	4.0
	142.19	4.420	324.46	11458.29	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	1346	3.0
	142.16	4.330	320.40	11314.95	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	1321	2.0
	142.14	4.250	316.34	11171.61	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	1295	1.0
	142.11 142.08	4.170 4.080	312.29 308.23	11028.27 10884.93	4.1 4.1	143.341 143.341	4.1 4.1	143.3 143.3	0.0	0.0 0.0	0.0	0.0	1270 1245	0.0 9.0
	142.06	4.000	304.17	10741.59	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	1219	9.0 8.0
	142.03	3.920	300.11	10598.25	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	1194	7.0
	142.01	3.830	296.05	10454.91	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	1168	6.0
op of Chamber Eleva	141.98	3.750	291.99	10311.57	4.3	151.684	3.9	137.8	0.0	0.0	0.4	13.9	1143	5.0
	141.96	3.670	287.70	10159.88	4.6	161.006	3.7	131.6	0.0	0.0	0.8	29.4	1118	4.0
	141.93	3.580	283.14	9998.88	4.8	169.612	3.6	125.8	0.0	0.0	1.2	43.8	1092	3.0
	141.91	3.500	278.33	9829.26	5.3	187.571	3.2	113.9	0.0	0.0	2.1	73.7	1067	2.0
	141.88	3.420	273.02	9641.69	5.6	199.183	3.0	106.1	0.0	0.0	2.6	93.1	1041	1.0
	141.86	3.330	267.38	9442.51	5.9	207.950	2.8	100.3	0.0	0.0	3.0	107.7	1016	0.0
	141.83	3.250	261.49	9234.56	6.1	215.275	2.7	95.4	0.0	0.0	3.4	119.9	991	9.0
	141.81	3.170	255.40	9019.29	6.3	221.641	2.6	91.1	0.0	0.0	3.7	130.5	965	8.0
	141.78	3.080	249.12	8797.64	6.4	227.301	2.5	87.4	0.0	0.0	4.0	139.9	940	7.0
	141.75	3.000	242.68	8570.34	6.6	232.406	2.4	84.0	0.0	0.0	4.2	148.4	914	6.0
	141.73	2.920	236.10	8337.94	6.7	237.066	2.3	80.9	0.0	0.0	4.4	156.2	889	5.0
	141.70 141.68	2.830 2.750	229.39 222.56	8100.87 7859.54	6.8 7.0	241.334 245.531	2.2 2.1	78.0 75.2	0.0	0.0 0.0	4.6 4.8	163.3 170.3	864 838	4.0 3.0
	141.65	2.730	215.60	7614.01	7.0	249.193	2.1	72.8	0.0	0.0	5.0	176.4	813	2.0
	141.63	2.580	208.55	7364.82	7.1	252.593	2.0	70.5	0.0	0.0	5.2	182.1	787	1.0
	141.60	2.500	201.40	7112.22	7.2	255.781	1.9	68.4	0.0	0.0	5.3	187.4	762	0.0
	141.58	2.420	194.15	6856.44	7.3	258.777	1.9	66.4	0.0	0.0	5.4	192.4	737	9.0
	141.55	2.330	186.82	6597.67	7.4	261.601	1.8	64.5	0.0	0.0	5.6	197.1	711	8.0
	141.53	2.250	179.42	6336.06	7.5	264.265	1.8	62.7	0.0	0.0	5.7	201.5	686	7.0
	141.50	2.170	171.93	6071.80	7.5	266.545	1.7	61.2	0.0	0.0	5.8	205.3	660	6.0
	141.48	2.080	164.39	5805.25	7.6	268.936	1.7	59.6	0.0	0.0	5.9	209.3	635	5.0
	141.45	2.000	156.77	5536.32	7.7	271.216	1.6	58.1	0.0	0.0	6.0	213.1	610	4.0
	141.42	1.920	149.09	5265.10	7.7	273.375	1.6	56.7	0.0	0.0	6.1	216.7	584	3.0
	141.40	1.830	141.35	4991.73	7.8	275.422	1.6	55.3	0.0	0.0	6.2	220.1	559	2.0
	141.37	1.750	133.55	4716.31	7.8	277.117	1.5	54.2	0.0	0.0	6.3	223.0	533	1.0
	141.35	1.670	125.70	4439.19	7.9	278.974	1.5	52.9	0.0	0.0	6.4	226.1	508	0.0
	141.32 141.30	1.580 1.500	117.80 109.85	4160.21	7.9 8.0	280.739 282.172	1.5 1.4	51.7 50.8	0.0	0.0	6.5	229.0 231.4	483 457	9.0 8.0
	141.27	1.420	109.85	3879.48 3597.30	8.0	282.172	1.4	49.7	0.0	0.0 0.0	6.6 6.6	231.4	437	7.0
	141.25	1.330	93.83	3313.54	8.1	285.289	1.4	49.7	0.0	0.0	6.7	234.0	406	6.0
	141.22	1.250	85.75	3028.25	8.1	286.731	1.4	47.7	0.0	0.0	6.8	239.0	381	5.0
	141.20	1.170	77.63	2741.52	8.2	287.861	1.3	47.0	0.0	0.0	6.8	240.9	356	4.0
	141.17	1.080	69.48	2453.66	8.2	289.163	1.3	46.1	0.0	0.0	6.9	243.0	330	3.0
	141.14	1.000	61.29	2164.49	8.2	290.151	1.3	45.5	0.0	0.0	6.9	244.7	305	2.0
	141.12	0.920	53.08	1874.34	8.2	291.342	1.3	44.7	0.0	0.0	7.0	246.7	279	1.0
	141.09	0.830	44.83	1583.00	8.3	292.935	1.2	43.6	0.0	0.0	7.1	249.3	254	0.0
Bottom of Chamber El		0.750	36.53	1290.07	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	229	9.0
	141.04	0.670	32.47	1146.73	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	203	3.0
	141.02	0.580	28.41	1003.38	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	178	7.0
	140.99	0.500	24.35	860.04	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	152	5.0
	140.97	0.420	20.29	716.70	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	127	5.0
	140.94	0.330	16.24	573.36	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	102	1.0
	140.92 140.89	0.250 0.170	12.18 8.12	430.02 286.68	4.1 4.1	143.341 143.341	4.1 4.1	143.3 143.3	0.0	0.0 0.0	0.0	0.0	76 51	3.0 2.0
	140.89	0.170	4.06	143.34	4.1	143.341	4.1	143.3	0.0	0.0	0.0	0.0	25	2.0 1.0
	1 10.07	0.000	1.00	113.37		113.371	11.1	1 13.3	0.0	0.0		0.0		

VISUAL OTTHYMO MODEL-Pre-Development

VISUAL OTTHYMO MODEL-Post-Development

VISUAL OTTHYMO OUTPUT-Pre-Development

```
V V I SSSSS U U A A L
V V I SS U U AAAAA L
V V I SS U U AAAAA L
V V I SS U U AAAAA L
VV I SSSSS UUUUU A A L
VV I SSSSS UUUUU A A LLLLL

OOO TTTTT TTTTT H H Y Y M M OOO
O O T T H H Y Y M M OO
O O T T H H Y M M OOO
```

Developed and Distributed by Clarifica Inc. Copyright 1996, 2007 Clarifica Inc. All rights reserved.

***** DETAILED OUTPUT *****

used in: INTENSITY = $A / (t + B)^C$

Duration of storm = 3.00 hrsStorm time step = 10.00 minTime to peak ratio = .33

TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.17	1.53	1.00	94.77	1.83	4.54	2.67	1.39
.33	2.32	1.17	36.99	2.00	3.37	2.83	1.17
.50	3.95	1.33	17.18	2.17	2.60	3.00	1.00
.67	8.18	1.50	9.92	2.33	2.06		
.83	27.06	1.67	6.46	2.50	1.68		

PEAK FLOW (cms) = .075 (i)
TIME TO PEAK (hrs) = 1.167
RUNOFF VOLUME (mm) = 10.824
TOTAL RAINFALL (mm) = 37.696
RUNOFF COEFFICIENT = .287

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
** SIMULATION NUMBER: 6 **
 *********
| CHICAGO STORM |
                 IDF curve parameters: A=5588.000
| Ptotal= 80.54 mm |
                 B= 28.000
                                   C = 1.000
                  used in: INTENSITY = A / (t + B)^C
                  Duration of storm = 3.00 \text{ hrs}
                  Storm time step = 10.00 \text{ min}
                  Time to peak ratio = .33
                  RAIN | TIME RAIN | TIME RAIN | TIME
             TIME
                                                      RAIN
             hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
             .17
                  5.26 | 1.00 147.05 | 1.83 14.14 | 2.67 4.81
             .33
                  7.73 | 1.17 77.70 | 2.00 10.82 | 2.83 4.10
             | CALIB
| NASHYD (0005) |
                Area (ha) = 1.82 Curve Number (CN) = 80.0 Ia (mm) = 5.00 \# of Linear Res.(N) = 3.00
|ID= 1 DT=10.0 min | Ia
----- U.H. Tp(hrs) = .20
   Unit Hyd Qpeak (cms) = .348
   PEAK FLOW
               (cms) = .240 (i)
   TIME TO PEAK (hrs) = 1.167
   RUNOFF VOLUME (mm) = 39.971
   TOTAL RAINFALL (mm) = 80.536
   RUNOFF COEFFICIENT = .496
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
______
```

PROJECT NO. 21241 (PH)

VISUAL OTTHYMO OUTPUT-Post-Development									

sssss u U A L SS v U U AA L v I v v SS U U AAAAA L v v SS U U A A L I vv SSSSS UUUUU A A LLLLL OOO TTTTT TTTTT H H Y Y M M OOO T H H YY MM MM O O T 0 0 0 0 т T H H Y M M 000 000 Developed and Distributed by Clarifica Inc. Copyright 1996, 2007 Clarifica Inc. All rights reserved. **** DETAILED OUTPUT **** Input filename: C:\VO Dongle Driver\Visual OTTHYMO 2.3.3\voin.dat Output filename: P:\2021\21241\1926 (21241-04223) - Port Hope (PH)\Design and Reports\Computer Analysis\OTTHYMO-NAUTICAL SITE-Chicago-4hr Summary filename: P:\2021\21241\1926 (21241-04223) - Port Hope (PH)\Design and Reports\Computer Analysis\OTTHYMO-NAUTICAL SITE-Chicago-4hr DATE: 4/19/2023 TIME: 2:14:45 PM USER: COMMENTS: ** SIMULATION NUMBER: 2 ** ******* | CHICAGO STORM | IDF curve parameters: A=2464.000 | Ptotal= 38.49 mm | B= 16.000 C= 1.000 ----used in: INTENSITY = A / (t + B)^C Duration of storm = 4.00 hrsStorm time step = 10.00 min Time to peak ratio = .33 TIME RAIN | TIME RAIN | TIME RAIN | TIME mm/hr | hrs mm/hr | hrs mm/hr | hrs .81 | 1.17 | 27.06 | 2.17 | 4.54 | 3.17 hrs mm/hr .17 1.17 1.09 | 1.33 94.77 | 2.33 3.37 | 3.33 .33 1.00 .50 1.53 | 1.50 36.99 | 2.50 2.60 | 3.50 . 87 17.18 | 2.67 9.92 | 2.83 . 67 2.32 | 1.67 2.06 | 3.67 .76 3.95 | 1.83 1.68 | 3.83 . 67 .83 1.00 8.18 | 2.00 6.46 | 3.00 1.39 | 4.00 | CALIB | NASHYD (0004) | (ha) = .63 Curve Number (CN) = 80.0

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

(mm) = 5.00 # of Linear Res.(N) = 3.00

|ID= 1 DT= 5.0 min | Ia

Area

----- U.H. Tp(hrs) = .17

```
TIME
                      RAIN | TIME RAIN | TIME RAIN | TIME
                                                                    RAIN
                hrs
                      mm/hr | hrs
                                      mm/hr | hrs
                                                    mm/hr | hrs
                                                                     mm/hr
                       .81 | 1.083 | 27.06 | 2.083 | 4.54 | 3.08
                .083
                                                                    1.17
                .167
                       .81 | 1.167 | 27.06 | 2.167 | 4.54 | 3.17
1.09 | 1.250 | 94.77 | 2.250 | 3.37 | 3.25
                                                                     1.17
                .250
                       1.09 | 1.333 94.77 | 2.333
                .333
                                                      3.37 | 3.33
                                                                     1.00
                .417
                      1.53 | 1.417 | 36.99 | 2.417 | 2.60 | 3.42
                                                                     . 87
                       1.53 | 1.500 | 36.99 | 2.500
2.32 | 1.583 | 17.18 | 2.583
                                                      2.60 | 3.50
                .500
                                                                      . 87
                .583
                                                      2.06 | 3.58
                                                                       .76
                       2.06 | 3.67
                . 667
                                                                      .76
                .750
                      3.95 | 1.750
                                     9.92 | 2.750
                                                    1.68 | 3.75
                                                                      . 67
                                                      1.68 | 3.83
                .833
                       3.95 | 1.833
                                      9.92 | 2.833
                                                                      . 67
                                     6.46 | 2.917
                                                      1.39 | 3.92
                .917
                       8.18 | 1.917
                                                                      . 59
               1.000 8.18 | 2.000 6.46 | 3.000 1.39 | 4.00 .59
    Unit Hyd Qpeak (cms)=
    PEAK FLOW
                   (cms)=
                            .029 (i)
                   (hrs) = 1.500
    TIME TO PEAK
    RUNOFF VOLUME
                    (mm) = 11.523
    TOTAL RAINFALL (mm) = 38.492
    RUNOFF COEFFICIENT = .299
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
| STANDHYD (0003) | Area (ha) = .70
|ID= 1 DT= 5.0 min | Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
-----
                            IMPERVIOUS PERVIOUS (i)
                  (ha)=
    Surface Area
                            .63 .07
    Dep. Storage
                    (mm) =
                               1.00
                                            1.00
                    (%) = 1.00

(m) = 68.30
                                           2.00
    Average Slope
    Length
                                          40.00
                              .013
    Mannings n
                                           .250
    Max.Eff.Inten.(mm/hr) = 94.77 31.12

over (min) 5.00 10.00

Storage Coeff. (min) = 2.08 (ii) 5.07 (ii)

Unit Hyd. Tpeak (min) = 5.00 10.00

Unit Hyd. peak (cms) = .31 .16
                                           .16
                                                       *TOTALS*
                                            .01
    PEAK FLOW
                   (cms)=
                           .16 .01
1.33 1.42
37.49 13.92
                                .16
                                                         .169 (iii)
    TIME TO PEAK
                   (hrs) =
                                                          1.33
    RUNOFF VOLUME (mm) =
                                                        35.13
                           38.49
                                         38.49
                                                        38.49
    TOTAL RAINFALL (mm) =
    RUNOFF COEFFICIENT =
                               .97
                                           .36
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
       (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
          CN* = 80.0 Ia = Dep. Storage (Above)
      (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
          THAN THE STORAGE COEFFICIENT.
     (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
| STANDHYD (0001) | Area (ha) = .17
|ID= 1 DT= 5.0 min | Total Imp(%)= 99.00 Dir. Conn.(%)= 99.00
                           IMPERVIOUS PERVIOUS (i)
    Surface Area
                    (ha)=
                             .17 .00
                                           1.00
2.00
    Dep. Storage
                    (mm) =
                               1.00
                   (mm) = 1.00
(%) = 1.00
(m) = 33.70
    Average Slope
                                          40.00
    Length
```

--- TRANSFORMED HYETOGRAPH ----

	Mannings n	=	.013	.250			
	Max.Eff.Inten.(m	m /h m) —	94.77	155.61			
	Storage Coeff.	(min)	5.00	5.00 (ii) 2.51	/÷÷\		
	-		5.00	5.00	(11)		
	Unit Hyd. Tpeak						
	Unit Hyd. peak	(cms)=	. 33	.29	+m	IOMAT C+	
	DEAK BLOW	(\	0.4	00		OTALS*	
		(cms)=	.04 1.33			.044 (iii)	
		(hrs)=				1.33	
		(mm) =				37.25	
	TOTAL RAINFALL					38.49	
	RUNOFF COEFFICIE	ENT =	.97	.36		. 97	
****	* WARNING: STORAG	E COEFF.	IS SMALLER	R THAN TIME S	TEP!		
	(+) CN DDOCEDI	TDE CETEC	MED EOD DEI	NITOIIC TOCCEC	_		
	(i) CN PROCEDU						
	CN* = 8		_	torage (Above	∍)		
	(ii) TIME STEP						
	(iii) PEAK FLOW		OEFFICIENT.		,		
	(III) PEAR FLOW	DOES NOT	INCLUDE BE	ASEFLOW IF AN	٠.		
	LIB						
		3	(ha) =	22			
	ANDHYD (0002) 1 DT= 5.0 min				(%)-	00 00	
	1 DI= 5.0 MIN	TOTAL	Imp(σ) = 93	9.00 DIF. C	JIII . (%) —	99.00	
			TMDEDUTOR	DEBUTORE	/÷\		
	Surface Area			S PERVIOUS	(1)		
	Surrace Area	(ha) = (mm) =	.32				
	Dep. Storage	(mm) =	1.00	1.00			
	Average Slope	(0)-	1.00				
	Length	(m) =					
	Mannings n	=	.013	. 250			
	Mon Eff Inton /m	/b \ -	04 77	77 01			
	Max.Eff.Inten.(n						
		(min)	5.00	5.00	/ ± ± \		
	Storage Coeff.			(ii) 2.79 5.00	(11)		
	Unit Hyd. Tpeak		5.00				
	Unit Hyd. peak	(Cilis) =	.32	. 28	+m	IOMAT C+	
	DEAK ELOM	(ama\-	0.0	00	^1	OTALS*	
		(cms) =				.084 (iii) 1.33	
		(hrs)=	1.33 37.49	1.33			
	RUNOFF VOLUME					37.25	
	TOTAL RAINFALL	. ,	38.49			38.49	
	RUNOFF COEFFICIE	ENT =	. 97	.36		. 97	
****	* WARNING: STORAG	E COEFF.	IS SMALLER	R THAN TIME S	rep!		
	(i) CN PROCEDU						
			-	corage (Above	∍)		
	(ii) TIME STEP						
			OEFFICIENT.		_		
	(iii) PEAK FLOW	DOES NOT	INCLUDE BA	ASEFLOW IF AN	ζ.		
•) HYD (0207)						
1	1 + 2 = 3			EAK TPEAK			
			(ha) (cr	ns) (hrs) 14 1.33	(mm)		
	ID1= 1 (000		.17 .04	14 1.33	37.25		
	+ ID2= 2 (000)2):	.32 .08	1.33	37.25		
	ID = 3 (020))7):	.49 .12	29 1.33	37.25		
			T110T 11DT D1	OHHT ONG TH 31	737		

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

```
| ADD HYD (0208) |
                      AREA QPEAK TPEAK R.V.
| 1 + 2 = 3 |
                       (ha) (cms) (hrs)
                                               (mm)
                                            35.13
       ID1= 1 (0003):
                        .70
                               .169
                                      1.33
      + ID2= 2 (0207):
                        .49 .129 1.33 37.25
        _____
        ID = 3 (0208): 1.19 .298 1.33 36.01
    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
-----
| ADD HYD (0209) |
                   AREA QPEAK TPEAK R.V.
| 1 + 2 = 3 |
                      (ha) (cms) (hrs)
                                              (mm)
      ID1= 1 (0004): .63 .029 1.50 11.52
+ ID2= 2 (0208): 1.19 .298 1.33 36.01
                       1.19
                              .298
      + ID2= 2 (0208):
                                     1.33
                                            36.01
              ------
                               _____
        ID = 3 (0209): 1.82 .315 1.33 27.55
    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| RESERVOIR (0206) |
| IN= 2---> OUT= 1 |
                   OUTFLOW STORAGE | OUTFLOW STORAGE (cms) (ha.m.) | (cms) (ha.m.) .0000 | .0236 .0693
| DT= 5.0 min |
                                                  .0691
                      .0162
                              .0102 | .0255
                      .0170
.0194
                              .0118 | .0272
.0255 | .0288
                                                   .0950
                                                     .1039
                      .0216 .0394 | .0000
                                                    .0000
                                            TPEAK
                                 QPEAK
                                                      R.V.
(mm)
                           AREA
   (ha) (cms) (hrs) (mm)
INFLOW: ID= 2 (0209) 1.821 .315 1.33 27.55
OUTFLOW: ID= 1 (0206) 1.821 .021 2.17 27.47
               PEAK FLOW REDUCTION [Qout/Qin](%)= 6.77
               TIME SHIFT OF PEAK FLOW (min) = 50.00
               MAXIMUM STORAGE USED
                                         (ha.m.) = .0379
 *********
 ** SIMULATION NUMBER:
 ********
-----
| CHICAGO STORM |
                   IDF curve parameters: A=5588.000
                    B= 28.000
| Ptotal= 83.38 mm |
                                     C= 1.000
                    used in: INTENSITY = A / (t + B) ^C
                    Duration of storm = 4.00 \text{ hrs}
                    Storm time step = 10.00 min
                    Time to peak ratio = .33
              TIME
                   RAIN | TIME RAIN | TIME RAIN | TIME RAIN
               hrs
                   mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
                    2.89 | 1.17
                                 60.52 | 2.17
               .17
                                               14.14 | 3.17
                                                             4.10
                   3.81 | 1.33 147.05 | 2.33 10.82 | 3.33
                                                            3.54
               . 33
               .50
                   5.26 | 1.50 77.70 | 2.50
                                              8.55 | 3.50
                                                            3.08
               .67 7.73 | 1.67 43.43 | 2.67
.83 12.46 | 1.83 27.74 | 2.83
                                               6.93 | 3.67
                                                             2.71
                                              5.73 | 3.83
                                                            2.40
              1.00 23.45 | 2.00 19.25 | 3.00 4.81 | 4.00 2.14
```

PROJECT NO. 21241 (PH)

```
| CALIB
| NASHYD (0004) | Area (ha)= .63 Curve Number (CN)= 80.0 | ID= 1 DT= 5.0 min | Ia (mm)= 5.00 # of Linear Res.(N)= 3.00
                            (mm) = 5.00
-----
                    U.H. Tp(hrs) =
                                    .17
        NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
                             ---- TRANSFORMED HYETOGRAPH ----
                TIME
                      RAIN | TIME RAIN | TIME RAIN | TIME
                                                                   RAIN
                hrs
                      mm/hr | hrs
                                     mm/hr | hrs
                                                   mm/hr | hrs
                                                                   mm/hr
                      2.89 | 1.083 | 60.52 | 2.083 | 14.14 | 3.08
                .083
                                                                   4.10
                .167
                       2.89 | 1.167 | 60.52 | 2.167 | 14.14 | 3.17
                                                                    4.10
                       3.81 | 1.250 147.05 | 2.250
                .250
                                                    10.82 | 3.25
                                                                    3.54
                       .333
                                                                    3.54
                .417
                       5.26 | 1.417 77.70 | 2.417
                                                   8.55 | 3.42 3.08
                                                   8.55 | 3.50
                .500
                       5.26 | 1.500 77.70 | 2.500
                                                                   3.08
                       7.73 | 1.583
                .583
                                                     6.93 | 3.58
                                     43.43 | 2.583
                                                                    2.71
                       7.73 | 1.667 43.43 | 2.667
                . 667
                                                     6.93 I 3.67
                                                                    2.71
                .750 12.46 | 1.750 27.74 | 2.750 5.73 | 3.75
                                                                  2.40
               .833 12.46 | 1.833 27.74 | 2.833 5.73 | 3.83
.917 23.45 | 1.917 19.25 | 2.917 4.81 | 3.92
                                                                    2.40
                                                                  2.14
               1.000 23.45 | 2.000 19.25 | 3.000 4.81 | 4.00 2.14
    Unit Hyd Qpeak (cms)=
                            .141
                           .092 (i)
    PEAK FLOW
                   (cms)=
                  (hrs) = 1.500
    TIME TO PEAK
    RUNOFF VOLUME
                    (mm) = 43.141
    TOTAL RAINFALL (mm) = 83.375
    RUNOFF COEFFICIENT = .517
     (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| STANDHYD (0003) | Area (ha) = .70
|ID= 1 DT= 5.0 min | Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00
                           IMPERVIOUS PERVIOUS (i)
                 (ha)=
    Surface Area
                            .63 .07
                    (mm) =
                               1.00
                                           1.00
    Dep. Storage
                     (%) = 1.00
(m) = 68.30
                                          2.00
    Average Slope
    Length
Mannings n
                                         40.00
                              .013
                                          .250
    Max.Eff.Inten.(mm/hr) = 147.05 78.94
over (min) 5.00 5.00
                              1.74 (ii) 4.25 (ii)
    Storage Coeff. (min)=
    Storage Coeff. (min)= ..., Unit Hyd. Tpeak (min)= 5.00 5.00 Unit Hyd. peak (cms)= .32 .23
                                           .23
                                                      *TOTALS*
                             .26
1.33 1.33
46.52
                                                        .272 (iii)
    PEAK FLOW
                   (cms) =
    TIME TO PEAK
                   (hrs) =
                                                          1.33
    RUNOFF VOLUME (mm) =
                                                        78.79
                           83.38
                                                       83.38
    TOTAL RAINFALL (mm) =
                                         83.38
    RUNOFF COEFFICIENT =
                               .99
                                           .56
                                                         . 94
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
          CN* = 80.0 Ia = Dep. Storage (Above)
      (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
          THAN THE STORAGE COEFFICIENT.
     (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

| STANDHYD (0001) | Area (ha) = .17

```
|ID= 1 DT= 5.0 min | Total Imp(%)= 99.00 Dir. Conn.(%)= 99.00
-----
                           IMPERVIOUS PERVIOUS (i)
                             .17
    Surface Area
                 (ha)=
                                          .00
    Dep. Storage (mm)=
                              1.00
                                          1.00
    Average Slope (%) = 1.00
Length (m) = 33.70
Mannings n = .013
                                          2.00
                                         40.00
                                          .250
                                     394.73
    Max.Eff.Inten.(mm/hr) = 147.05
              over (min)
                              5.00
                                           5.00
    Storage Coeff. (min)=
                              1.14 (ii) 2.10 (ii)
    Unit Hyd. Tpeak (min) =
                           5.00 5.00
                              .34
                                          .31
    Unit Hyd. peak (cms)=
                                                     *TOTALS*
    PEAK FLOW (cms) = .07 .00

TIME TO PEAK (hrs) = 1.33 1.33

RUNOFF VOLUME (mm) = 82.38 46.52

TOTAL RAINFALL (mm) = 83.38 83.38

RUNOFF COEFFICIENT = .99 .56
                                           .00
                                                        .069 (iii)
                                                         1.33
                                                        82.01
                                         83.38
                                                       83.38
                                          .56
                                                        . 98
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
          CN* = 80.0 Ia = Dep. Storage (Above)
     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
          THAN THE STORAGE COEFFICIENT.
     (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| CALIB
                    Area (ha) = .32
| STANDHYD (0002) |
|ID= 1 DT= 5.0 min | Total Imp(%)= 99.00 Dir. Conn.(%)= 99.00
                           IMPERVIOUS PERVIOUS (i)
                             1.00
                    (ha) =
    Surface Area
                             .32
    Dep. Storage
                    (mm) =
                              1.00
46.40
.013
    Average Slope (%)=
                                          2.00
    Length (m) = Mannings n =
                              46.40
                                         40.00
                                           .250
                                     197.36
    Max.Eff.Inten.(mm/hr) = 147.05
    over (min) 5.00 5.00 Storage Coeff. (min)= 1.38 (ii) 2.34 (ii)
    Unit Hyd. Tpeak (min) = 5.00 5.00
                                           .30
                               .33
    Unit Hyd. peak (cms)=
                                                     *TOTALS*
                             .13 .00
1.33 1.33
82.38 46.52
83.38 83.38
.99 .56
                                           .00
                                                        .131 (iii)
    PEAK FLOW
                   (cms)=
                 (hrs)=
                                          1.33
                                                         1.33
    TIME TO PEAK
    RUNOFF VOLUME
                                                        82.01
                    (mm) =
    TOTAL RAINFALL (mm) =
                                         83.38
                                                      83.38
    RUNOFF COEFFICIENT =
                                           .56
                                                          . 98
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
          CN* = 80.0 Ia = Dep. Storage (Above)
     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
          THAN THE STORAGE COEFFICIENT.
     (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD (0207) |
| 1 + 2 = 3 |
                         AREA QPEAK TPEAK R.V.
                         (ha) (cms) (hrs)
                                                   (mm)
                       .17
                                  .069 1.33
.131 1.33
        ID1= 1 (0001):
                                                 82.01
                           .32
                                                82.01
       + ID2= 2 (0002):
```

```
ID = 3 (0207): .49 .200 1.33 82.01
```

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

```
| ADD HYD (0208) |
| 1 + 2 = 3 |
                     AREA QPEAK TPEAK R.V.
                      (ha) (cms) (hrs)
.70 .272 1.33
                                     (hrs) (mm)
1.33 78.79
                                             (mm)
       ID1= 1 (0003):
                       .49 .200 1.33 82.01
      + ID2= 2 (0207):
                      ._____
       ID = 3 (0208): 1.19 .472 1.33 80.12
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
-----
| ADD HYD (0209) |
      | 1 + 2 = 3 |
             _____
       ID = 3 (0209): 1.82 .537 1.33 67.35
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| RESERVOIR (0206) |
| IN= 2---> OUT= 1 |
| DT= 5.0 min |
                  OUTFLOW STORAGE | OUTFLOW STORAGE

    (cms)
    (ha.m.)
    | (cms)
    (ha.m.)

    .0000
    .0000
    | .0236
    .0691

    .0162
    .0102
    | .0255
    .0822

                     .0170 .0118 | .0272
.0194 .0255 | .0288
.0216 .0394 | .0000
                                                 .0950
                                                  .1039
.0000
                                                    R.V.
                                           TPEAK
                          AREA QPEAK
   (ha) (cms) (hrs) (mm)
INFLOW: ID= 2 (0209) 1.821 .537 1.33 67.35
OUTFLOW: ID= 1 (0206) 1.821 .028 2.83 67.27
               PEAK FLOW REDUCTION [Qout/Qin](%)= 5.17
               TIME SHIFT OF PEAK FLOW (min) = 90.00
               MAXIMUM STORAGE USED
                                       (ha.m.) = .0981
______
 ********
 ** SIMULATION NUMBER: 7 **
 ********
-----
| CHICAGO STORM |
                   IDF curve parameters: A=5588.000
                            B= 28.000
| Ptotal= 80.54 mm |
                                    C= 1.000
                   used in: INTENSITY = A / (t + B)^C
                   Duration of storm = 3.00 \text{ hrs}
                   Storm time step = 10.00 min
                   Time to peak ratio = .33
             TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
              hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
              .17
                    5.26 | 1.00 147.05 | 1.83
                                             14.14 | 2.67
                                                           4.81
                    . 33
              .50 12.46 | 1.33 43.43 | 2.17
                                            8.55 | 3.00 3.54
```

```
.67 23.45 | 1.50 27.74 | 2.33 6.93 |
.83 60.52 | 1.67 19.25 | 2.50 5.73 |
```

| NASHYD (0004) | Area (ha) = .63 Curve Number (CN) = 80.0

----- U.H. Tp(hrs) = .17

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

--- TRANSFORMED HYETOGRAPH ----TIME RAIN | TIME RAIN | TIME RAIN | TIME hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr5.26 | .833 | 60.52 | 1.583 | 19.25 | 2.33 5.26 | .917 | 147.05 | 1.667 | 19.25 | 2.42 .083 6.93 .167 5.73 .250 7.73 | 1.000 147.05 | 1.750 14.14 | 2.50 5.73 .333 7.73 | 1.083 77.70 | 1.833 14.14 | 2.58 .417 12.46 | 1.167 77.70 | 1.917 10.82 | 2.67 4.81 .333 4.81 .500 12.46 | 1.250 43.43 | 2.000 10.82 | 2.75 4.10 .583 23.45 | 1.333 43.43 | 2.083 8.55 | 2.83 4.10 .667 23.45 | 1.417 27.74 | 2.167 8.55 | 2.92 3.54 .750 60.52 | 1.500 27.74 | 2.250 6.93 | 3.00 3.54

Unit Hyd Qpeak (cms)= .141

(cms) = .090 (i)PEAK FLOW TIME TO PEAK (hrs) = 1.167 RUNOFF VOLUME (mm) = 40.891 TOTAL RAINFALL (mm) = 80.536 RUNOFF COEFFICIENT = .508

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| STANDHYD (0003) | Area (ha) = .70 |ID= 1 DT= 5.0 min | Total Imp(%)= 90.00 Dir. Conn.(%)= 90.00

		IMPERVIOU	S PERVIOUS	(i)	
	41			(1)	
Surface Area	(ha) =	. 63	. 07		
Dep. Storage	(mm) =	1.00	1.00		
Average Slope	(%)=	1.00	2.00		
Length	(m) =	68.30	40.00		
Mannings n	=	.013	.250		
Max.Eff.Inten.(mm/hr)=	147.05	77.27		
over	(min)	5.00	5.00		
Storage Coeff.	(min) =	1.74	(ii) 4.25 (ii)	
Unit Hyd. Tpeak	(min) =	5.00	5.00		
Unit Hyd. peak	(cms)=	. 32	.23		
				TOTALS	
PEAK FLOW	(cms)=	.26	.01	.271 (iii)
TIME TO PEAK	(hrs) =	1.00	1.00	1.00	
RUNOFF VOLUME	(mm) =	79.54	44.23	76.00	
TOTAL RAINFALL	(mm) =	80.54	80.54	80.54	
RUNOFF COEFFICI	ENT =	.99	. 55	. 94	

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 - CN* = 80.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

```
| CALIB
| STANDHYD (0001) |
                           (ha) =
                                  .17
                    Area
                    Total Imp(%) = 99.00 Dir. Conn.(%) = 99.00
|ID= 1 DT= 5.0 min |
                           IMPERVIOUS PERVIOUS (i)
    Surface Area
                    (ha)=
                              .17
                                          .00
                              1.00
                                         1.00
    Dep. Storage
                    (mm) =
                   (%)=
                              1.00
                                         2.00
    Average Slope
                             33.70
                                        40.00
    Length
                    (m) =
    Mannings n
                              .013
                                          .250
                                      386.35
    Max.Eff.Inten.(mm/hr) = 147.05
                          5.00 5.00
1.14 (ii) 2.10 (ii)
              over (min)
    Storage Coeff. (min)=
                                        5.00
                          5.00
    Unit Hyd. Tpeak (min) =
                              .34
                                          .31
    Unit Hyd. peak (cms)=
                                                     *TOTALS*
                              .07
                                          .00
    PEAK FLOW
                   (cms)=
                                                       .069 (iii)
                                         1.00
    TIME TO PEAK
                  (hrs) =
                             1.00
                                                        1.00
                                        44.23
                             79.54
                                                       79.18
    RUNOFF VOLUME
                   (mm) =
    TOTAL RAINFALL (mm) =
                              80.54
                                         80.54
                                                      80.54
    RUNOFF COEFFICIENT =
                              .99
                                          . 55
                                                        . 98
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
          CN* = 80.0 Ia = Dep. Storage (Above)
     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
         THAN THE STORAGE COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| STANDHYD (0002) |
                    Area (ha) = .32
                    Total Imp(%) = 99.00 Dir. Conn.(%) = 99.00
|ID= 1 DT= 5.0 min |
                           IMPERVIOUS PERVIOUS (i)
                    (ha)=
    Surface Area
                            .32
                                          .00
                              1.00
                                         1.00
    Dep. Storage
                    (mm) =
                          1.00
46.40
                   (%)=
                                         2.00
    Average Slope
                                        40.00
    Length
            (m) =
    Mannings n
                             .013
                                         .250
                                    193.18
    Max.Eff.Inten.(mm/hr) = 147.05
                          5.00
             over (min)
                                          5.00
                          1.38 (ii) 2.34 (ii)
5.00 5.00
    Storage Coeff. (min)=
    Unit Hyd. Tpeak (min) =
    Unit Hyd. peak (cms)=
                              .33
                                          .30
                                                     *TOTALS*
                             .13 .00
1.00 1.00
44.23
    PEAK FLOW
                  (cms)=
                                                       .131 (iii)
    TIME TO PEAK (hrs)=
                                                        1.00
    RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) =
                                                       79.17
                              80.54
                                         80.54
                                                       80.54
    RUNOFF COEFFICIENT =
                              .99
                                          . 55
                                                        . 98
**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
          CN* = 80.0 Ia = Dep. Storage (Above)
     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
         THAN THE STORAGE COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD (0207) |
| 1 + 2 = 3 |
                          AREA
                                 QPEAK
                                          TPEAK
                                                   R.V.
                         (ha)
                                 (cms)
                                          (hrs)
                                                   (mm)
```

```
ID1= 1 (0001): .17 .069 1.00 79.18
+ ID2= 2 (0002): .32 .131 1.00 79.17
        ID = 3 (0207): .49 .200 1.00 79.18
    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ADD HYD (0208) |
| 1 + 2 = 3 |
                       AREA OPEAK
                                        TPEAK
                                              R.V.
                        (ha) (cms) (hrs) (mm)
      ID1= 1 (0003): .70 .271 1.00 76.00
+ ID2= 2 (0207): .49 .200 1.00 79.18
        ID = 3 (0208): 1.19 .472 1.00 77.31
    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
| ADD HYD (0209) |
| 1 + 2 = 3 |
                        AREA QPEAK TPEAK R.V.
-----
                        (ha)
                                (cms)
                                        (hrs)
                                                (mm)
        ID1= 1 (0004):
                         .63 .090 1.17 40.89
      + ID2= 2 (0208): 1.19 .472 1.00 77.31
                        -----
                                _____
        ID = 3 (0209): 1.82 .534 1.00 64.73
    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
-----
| RESERVOIR (0206) |
| IN= 2---> OUT= 1 |
| DT= 5.0 min |
                   OUTFLOW STORAGE | OUTFLOW STORAGE
                             (ha.m.) | (cms) (ha.m.)
.0000 | .0236 .069
.0102 | .0255 .082
-----
                      (cms)
                                                    .0691
.0822
                       .0000
                       .0162
                       .0170
                                .0118 | .0272
                                                      .0950
                       .0194 .0255 | .0288 .1039
.0216 .0394 | .0000 .0000
                       .0194
    AREA QPEAK TPEAK R.V.
(ha) (cms) (hrs) (mm)
INFLOW: ID= 2 (0209) 1.821 .534 1.00 64.73
OUTFLOW: ID= 1 (0206) 1.821 .028 2.50 64.65
                                                          64.73
                                                          64.65
                PEAK FLOW REDUCTION [Qout/Qin](%) = 5.16
                TIME SHIFT OF PEAK FLOW (min) = 90.00
                MAXIMUM STORAGE USED
                                           (ha.m.) = .0967
 ______
FINISH
```

PROJECT NO. 21241 (PH)

Hydroworks Sizing Summary

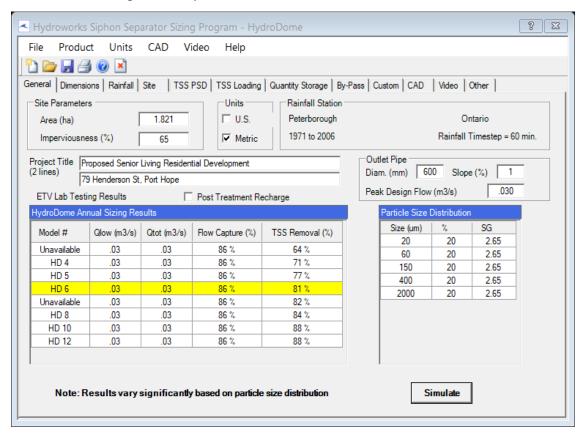
Proposed Senior Living Residential Development 60 Henderson St, Port Hope

02-04-2022

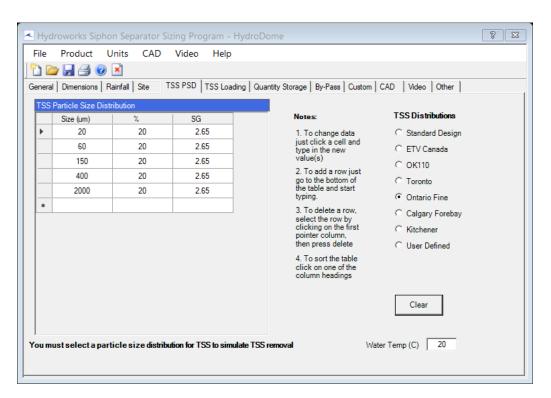
Recommended Size: HydroDome HD 6

A HydroDome HD 6 is recommended to provide 80 % annual TSS removal based on a drainage area of 1.821 (ha) with an imperviousness of 65 % and Peterborough, Ontario rainfall for the 20 um to 2000 um particle size distribution.

The recommended HydroDome HD 6 treats 86 % of the annual runoff and provides 81 % annual TSS removal for the Peterborough rainfall records and 20 um to 2000 um particle size distribution.

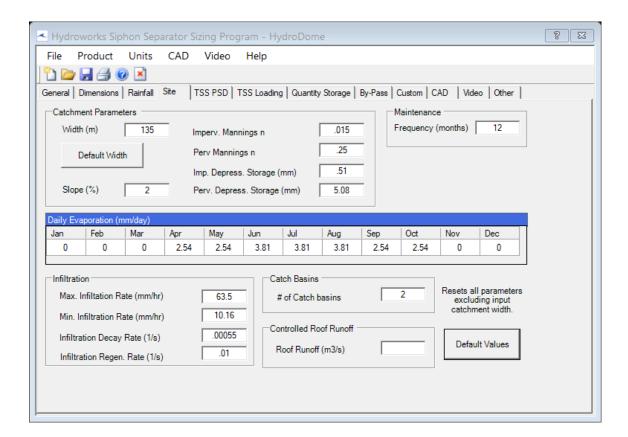

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of .03 (m3/s) Is less than the full pipe flow of 21.68 (m3/s) indicating free flow in the pipe during the peak flow assuming no tailwater condition. Partial pipe flow was assumed for the headloss calculations. The headloss was calculated to be 208 (mm) above the crown of the 600 (mm) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

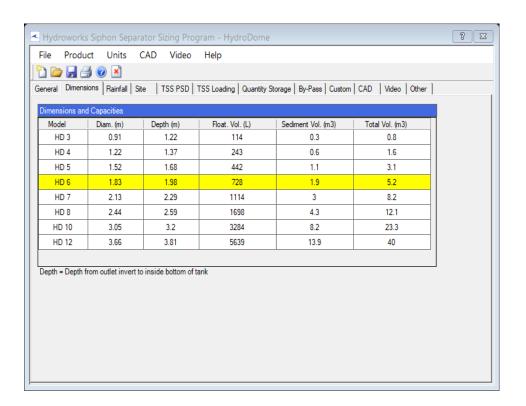

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

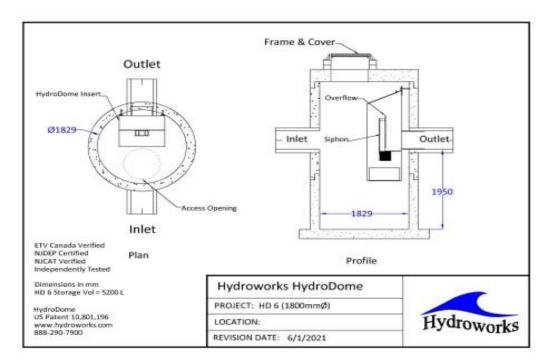
The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

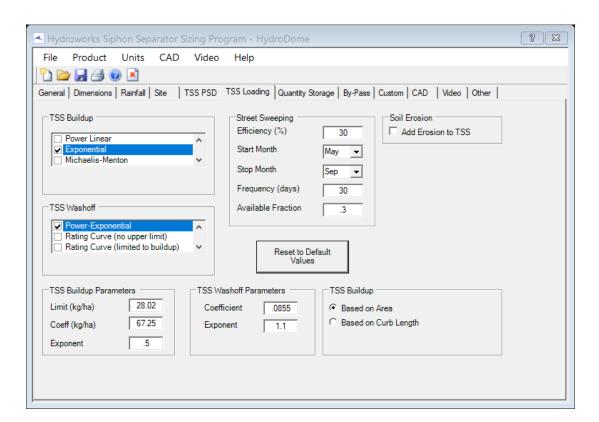
TSS Removal Sizing Summary

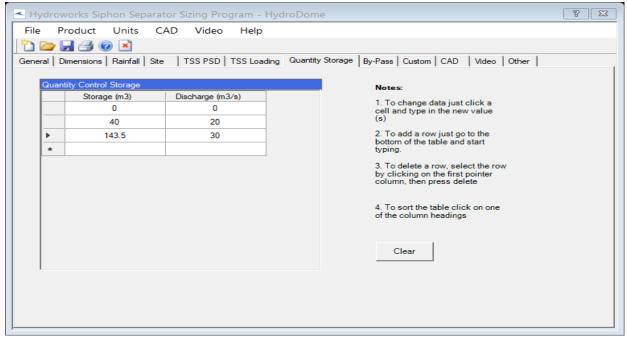


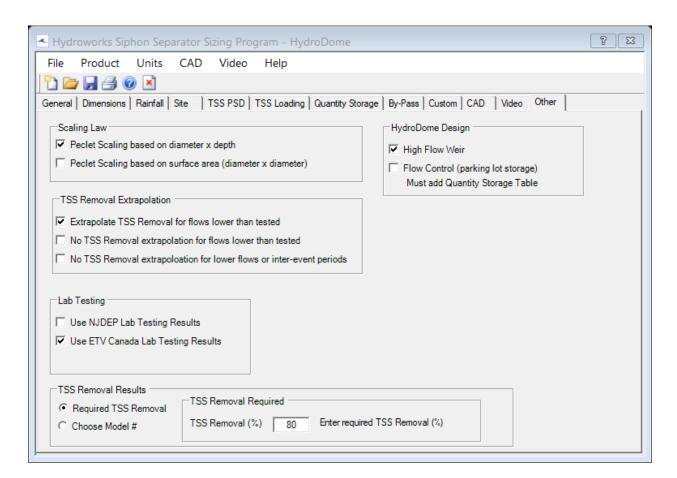
TSS Particle Size Distribution



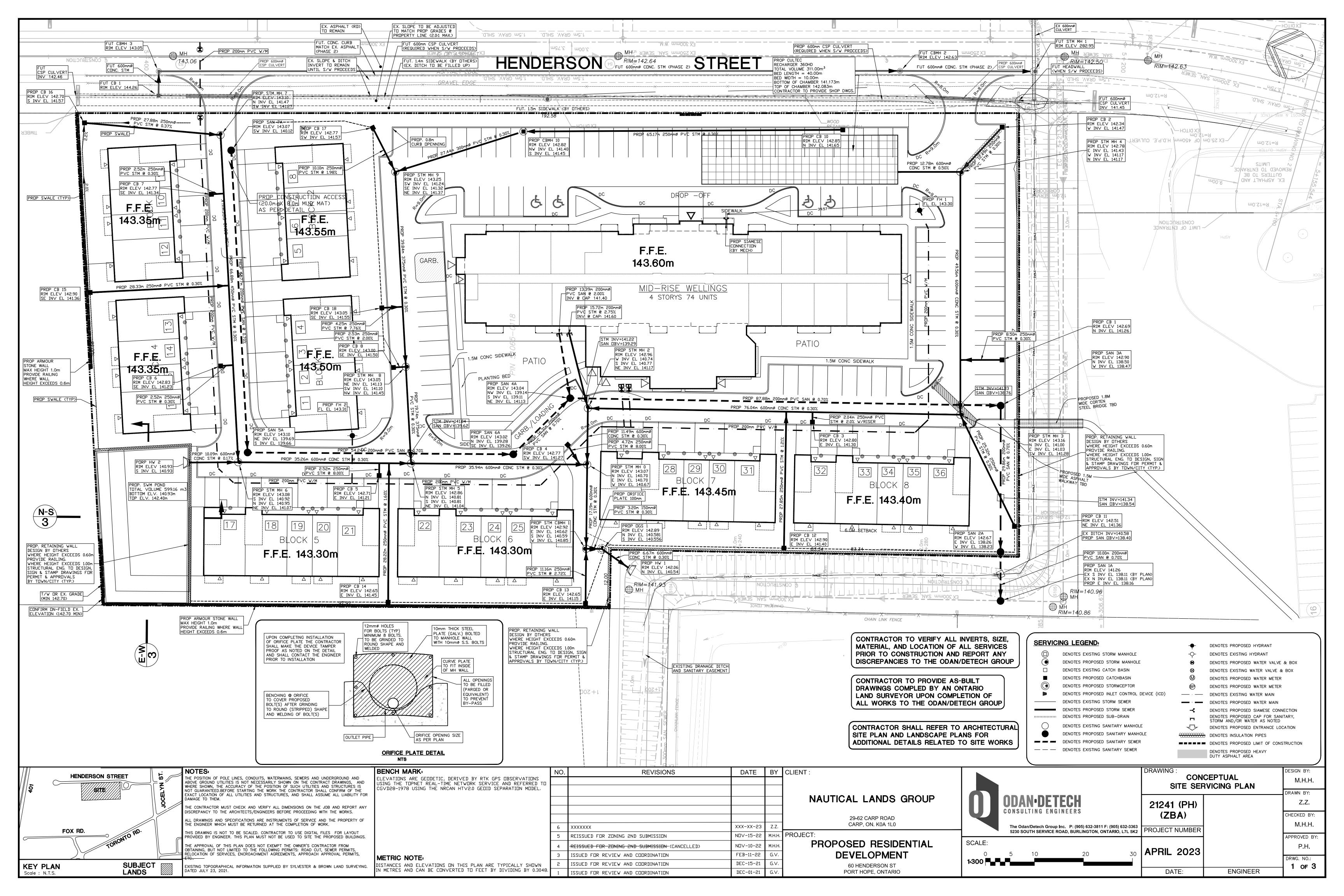

Site Physical Characteristics

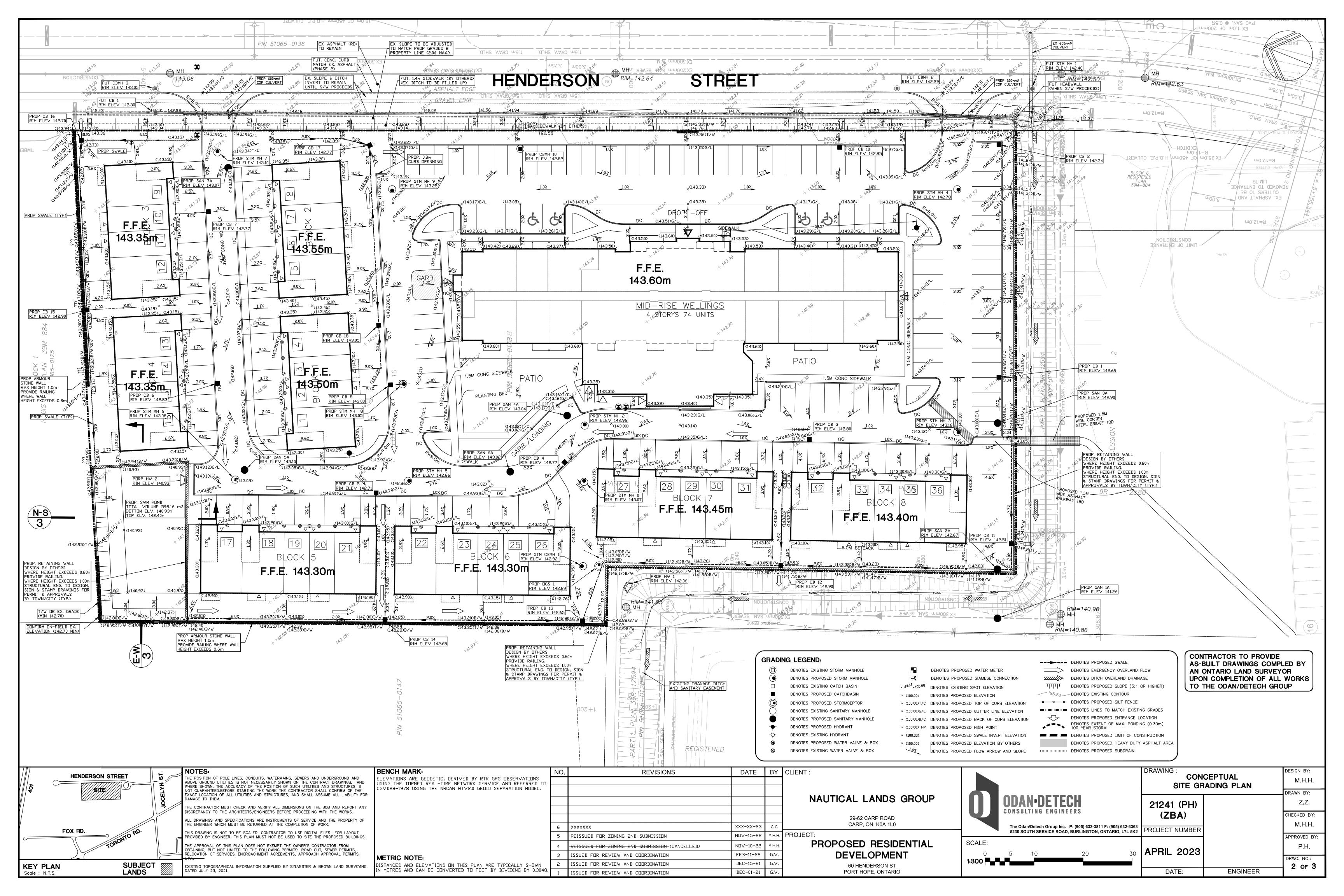

Dimensions And Capacities

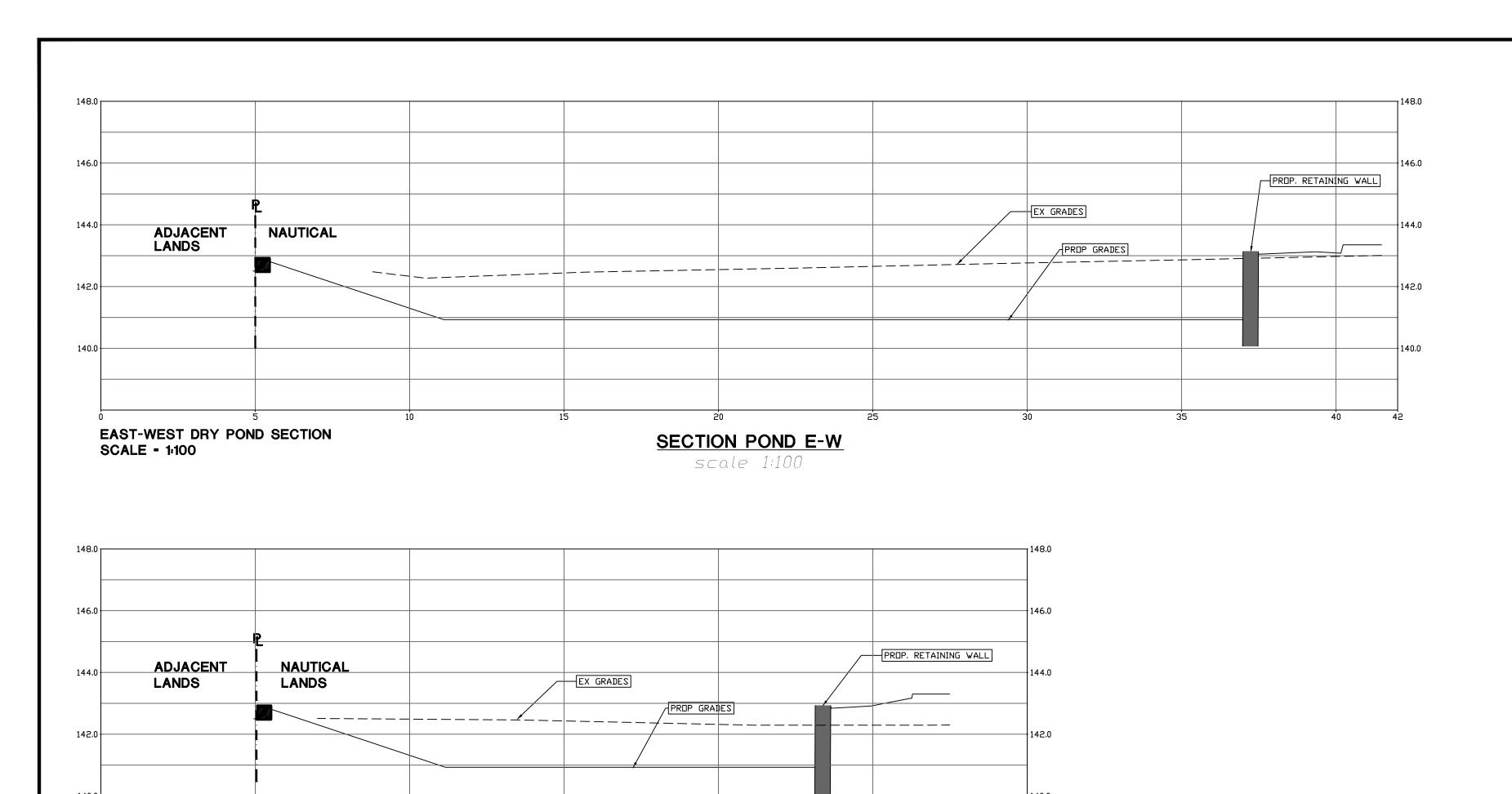

Generic HD 6 CAD Drawing


TSS Buildup And Washoff

Upstream Quantity Storage

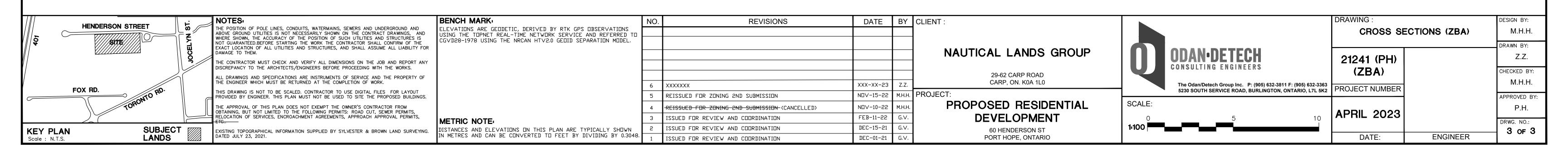

Other Parameters




Hydroworks Sizing Program - Version 5.5 Copyright Hydroworks, LLC, 2021

APPENDIX E

ODAN/DETECH GROUP ENGINEERING DRAWINGS
CONCEPT SITE SERVICING
CONCEPT SITE GRADING
CROSS SECTION POND



SECTION POND N-S

scale 1:100

NORTH-SOUTH DRY POND SECTION

SCALE - 1:100

